It’s all about water: from small scale hydrologic processes in ice wedge polygonal tundra and thermokarst lakes to larger scale river runoff (Lena River Delta, Siberia)

The Lena River Delta in Northern Yakutia forms one of the largest deltas in the Arctic and its catchment area (2 430 000 km2) is one of the largest in the whole of Eurasia. The Lena River distributes water and sediment in four main channels before discharging in total about 30 km3 of water through t...

Full description

Bibliographic Details
Main Authors: Boike, Julia, Langer, Moritz, Fedorova, Irina, Kutzbach, Lars, Cresto Aleina, Fabio
Format: Conference Object
Language:unknown
Published: American Geophysical Union 2013
Subjects:
Ice
Online Access:https://epic.awi.de/id/eprint/34871/
https://hdl.handle.net/10013/epic.43012
Description
Summary:The Lena River Delta in Northern Yakutia forms one of the largest deltas in the Arctic and its catchment area (2 430 000 km2) is one of the largest in the whole of Eurasia. The Lena River distributes water and sediment in four main channels before discharging in total about 30 km3 of water through the delta into the Arctic Ocean every year and its discharge has been observed to be increasing. The goal of this presentation is to characterize the hydrologic processes that are strongly affected by a transient climate component- the permafrost. Permafrost plays a major role for storage and release of water to rivers and surface and subsurface water bodies. Conversely, the coupled water and heat fluxes in the atmosphere and below ground have a marked influence on the permafrost’s thermal regime. Our study site, the Lena River Delta, is also one of the coldest and driest places on Earth, with mean annual air temperatures of about -13 °C, a large annual air temperature range of about 44 °C and summer precipitation usually less than 150 mm. Very cold continuous permafrost of about −8.6 °C (11 m depth) underlays the area between about 400 and 600 m below surface and since 2006 the permafrost has warmed than 1 °C at 10.7 m. Roughly half of the land surface is dominated by wet surfaces, such as polygons, ponds and thermokarst lakes. This contribution summarizes past and ongoing research on hydrologic processes across spatial scales, from microtopographic processes of polygonal tundra to regional scale deltaic processes to assess short and long term changes in water fluxes. We quantify unfrozen water in soils, streams and river discharges and water bodies’ storage at larger scales. Water bodies were mapped using optical and radar satellite data with resolutions of 4 m or better, Landsat-5 TM at 30 m and the MODIS water mask at 250 m resolution. Ponds, i. e. water bodies with surface are smaller than 104 m, make over 95 % of the total number of water bodies and are not resolved in Landsat-scale land cover classifications. ...