A global Finite-Element Sea-Ice Ocean Model focussed on deep water formation areas: Variability of North Atlantic deep water formation and interannual to decadal climate modes

The modeling and understanding of the deep-water formation variability, especially in the North Atlantic sector, is of crucial importance for the common global ocean variability, in particular on interannual to decadal time-scales. The local restriction of the deep water formation areas makes it nec...

Full description

Bibliographic Details
Main Author: Scholz, Patrick
Format: Thesis
Language:unknown
Published: 2012
Subjects:
Online Access:https://epic.awi.de/id/eprint/30959/
https://epic.awi.de/id/eprint/30959/1/phd_thesis_monographie_patrick_scholz.pdf
https://hdl.handle.net/10013/epic.39837
https://hdl.handle.net/10013/epic.39837.d001
Description
Summary:The modeling and understanding of the deep-water formation variability, especially in the North Atlantic sector, is of crucial importance for the common global ocean variability, in particular on interannual to decadal time-scales. The local restriction of the deep water formation areas makes it necessary to follow new model approaches that are able to resolve these areas with a sufficient high resolution without ignoring the global context. This study aims to validate the ability of the Finite-Element Sea-Ice Ocean Model (FESOM) to reproduce a reliable deep water formation in North Atlantic ocean and to analyse its variability on interannual to decadal time-scales. The FESOM approach works on unstructured triangular surface meshes, which allows us to faithfully resolve coastlines and local areas of interest. The first part of the thesis presents the characteristics of a global FESOM setup designed to study the variability in the deep-water formation areas over five decades for the period 1958-2004. The setup features a regionally increased resolution in the deep water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea as well as in equatorial and coastal areas. Further, this part of the thesis deals with the applied spinup procedure and the general validation of the FESOM model setup with respect to the performance of the sea-ice and ocean model component. Based on the analysis of the Atlantic Meridional Overturning Circulation (AMOC) we demonstrate that the upper ocean is converged within the applied spinup procedure. The sea ice model reproduces realistic sea-ice distributions and variabilities in the sea ice extent on both hemispheres as well as sea ice transport that compares well with observational data. The general ocean circulation model is validated based on a comparison of the model results with Ocean Weather Ship data in the North Atlantic. We can prove that the vertical structure is well captured in areas with improved resolution. Further, we are able to simulate the decadal ...