SEASONAL VARIABILITY OF CENTRAL ARCTIC OCEAN SEA-ICE COVER: NEW BIOMARKER (IP25 AND PIP25) DATA FROM SEDIMENT TRAPS DEPLOYED ON SOUTHERN LOMONOSOV RIDGE

During the Polarstern 1995 Expedition, a long-term mooring system with two cone-shaped multi-sampling traps was deployed at the dominantly ice-covered western slope of the southern Lomonosov Ridge (81°04.5'N, 138°54.0'E, 1712 m water depth). One trap was installed at 150 m below the sea su...

Full description

Bibliographic Details
Main Authors: Fahl, Kirsten, Stein, Rüdiger
Format: Conference Object
Language:unknown
Published: 2012
Subjects:
Online Access:https://epic.awi.de/id/eprint/30527/
https://epic.awi.de/id/eprint/30527/1/Poster_Korea_hoch.pdf
https://hdl.handle.net/10013/epic.39443
https://hdl.handle.net/10013/epic.39443.d001
Description
Summary:During the Polarstern 1995 Expedition, a long-term mooring system with two cone-shaped multi-sampling traps was deployed at the dominantly ice-covered western slope of the southern Lomonosov Ridge (81°04.5'N, 138°54.0'E, 1712 m water depth). One trap was installed at 150 m below the sea surface, the other at 150 m above the bottom at 1550 m depth; material was collected in 20 time intervals between September 1995 and August 1996. For background data see Fahl and Nöthig (2007). Here, we present new biomarker data recording the seasonal variability of sea-ice cover. This type of data representing modern seasonal variability of the sea-ice biomarker proxies, was not available so far but may help significantly the interpretation of these proxies to be used in sedimentary records for reconstruction of paleo-sea-ice distributions. In this study, we have focused on the novel sea ice proxy IP25, a direct proxy for sea ice coverage (Belt et al., 2007). Furthermore, we used the phytoplankton-IP25 index (PIP25 Index), a further development of the IP25 index, based on the coupling of the environmental information carried by IP25 (sea ice) and brassicasterol (open-water phytoplankton productivity) (Müller et al., 2011). The interval November 1995 to June 1996 is characterized by the absence of the sea-ice proxy IP25 (except very minor values for January and April), suggesting a predominantly permanent sea ice cover at the trap location. During July/August 1996, maximum fluxes of the diatom-specific fatty acids and brassicasterol as well as maximum contents of biogenic opal (Fahl and Nöthig, 2007) indicate increased primary productivity. The marine organic matter (here POC, brassicasterol, and fatty acids) and the IP25 values decrease systematically from 150 to 1550m depth, indicating the typical biogeochemical degradation with increasing water depth. Due to the coincidence of maximum abundances of sea-ice proxies and open-ocean primary productivity proxies during the July/August time interval we propose a ice-edge situation ...