Recent changes in Arctic Ocean circulation revealed by 129-Iodine observations and modelling

Anthropogenic radionuclides released into European coastal waters from nuclear fuel reprocessing plants at Sellafield (UK) and La Hague (France) flow northward through the Nordic Seas and label Atlantic Water (AW) entering the Arctic Ocean. Transport of the soluble radionuclide 129I through the Arct...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Karcher, Michael, Smith, J. N., Kauker, Frank, Gerdes, RĂ¼diger, Smethie Jr, W.
Format: Article in Journal/Newspaper
Language:unknown
Published: AGU 2012
Subjects:
Online Access:https://epic.awi.de/id/eprint/24849/
https://epic.awi.de/id/eprint/24849/1/JGR_Karcher_etal_2012.pdf
https://hdl.handle.net/10013/epic.39852
https://hdl.handle.net/10013/epic.39852.d001
Description
Summary:Anthropogenic radionuclides released into European coastal waters from nuclear fuel reprocessing plants at Sellafield (UK) and La Hague (France) flow northward through the Nordic Seas and label Atlantic Water (AW) entering the Arctic Ocean. Transport of the soluble radionuclide 129I through the Arctic Ocean has been simulated using a numerical model for the period from 1970 to 2010. The simulated tracer distributions closely conform to 129I measurements made across the Arctic Ocean during the mid-1990s and 2000s and clearly illustrate the dramatic changes in oceanic circulation which occurred during this time. The largest changes in surface circulation were associated with the transition from a negative to a positive phase of the Arctic Oscillation in the early 1990s and the subsequent return to a weak phase in the late 1990s and early 2000s. Model and experimental results indicate that a new circulation regime evolved in the late 2000s when a period of intense, anti-cyclonic surface stress led to a strengthening of the Beaufort Gyre. We submit that this resulted in a suppression of the counter-rotating boundary current of mid-depth Atlantic Water (AW) below the Beaufort Gyre, with upper AW in the Canada Basin showing signs of a reversal from cyclonic to anti-cyclonic flow. These results are consistent with the development of a new AW circulation scheme involving a separation between flow at intermediate depths in the Eurasian and Canada Basins which could eventually result in alteration of the source water characteristics of Arctic intermediate depth water in the Nordic seas.