From Prydz Bay shelf to the deep sea - insights into 1.3 Ma history of bottom-water formation and ice-rafting inferred from sediment cores recovered in the Prydz Bay region.

The Prydz Bay represents the third largest shelf area in Antarctica and is bounded to the south by the outlet of Lambert Glacier. The latter drains about 20 % of the East Antarctic Ice Sheet. Fluctuations in the extent and configuration of shelf ice and sea ice are known to be of wide influence on b...

Full description

Bibliographic Details
Main Authors: Borchers, A., Voigt, I., Frederichs, T., Esper, Oliver, Gersonde, Rainer, Kuhn, Gerhard, Grobe, Hannes, Diekmann, Bernhard
Format: Conference Object
Language:unknown
Published: 2009
Subjects:
Online Access:https://epic.awi.de/id/eprint/21101/
https://hdl.handle.net/10013/epic.33427
Description
Summary:The Prydz Bay represents the third largest shelf area in Antarctica and is bounded to the south by the outlet of Lambert Glacier. The latter drains about 20 % of the East Antarctic Ice Sheet. Fluctuations in the extent and configuration of shelf ice and sea ice are known to be of wide influence on bottom-water formation in Antarctica. They are thus of global impact as Antarctic Bottom Water (AABW) is a driving force of Thermohaline Circulation. We apply sedimentological, mineralogical and geochemical methods on sediment cores retrieved from Prydz Bay, MacRobertson Shelf, the continental slope off MacRobertson Land, and from the East Kerguelen Drift deposit to reconstruct past variations in the formation of bottom-water and calving of icebergs.A depth transect of sediment cores from the continental slope off MacRobertson Land enables us to distinguish between periods of contourite and/or turbidity current activity and ice-rafting events. We use this information to draw conclusions on the advance and retreat of ice shelves and to deduce the glacial history in the Prydz Bay hinterland during the Pleistocene. Dating of the sediment records was done with the help of palaeomagnetics and diatom stratigraphy. Though interpretation of the sediment records is complicated by hiatuses and difficulties in age determination we identified two major phases of glacial retreat within the last 1.3 Ma. These episodes coincide with results from a drill hole through Prydz Mouth Fan and with exposure age data from Prince Charles Mountains derived from cosmogenic nuclides. The first and obviously very strong glacial retreat took place between ~1.0 - 0.76 Ma, beginning in the time of Jaramillo palaeomagnetic reversal and pronounced interglacial MIS 31. A later retreat started about 120 ka ago after the pronounced interglacial MIS 5.5. Possible changes in the mineralogy of ice-rafted material with respect to the earlier glacial regression tentatively hint to shifts in the provenance of IRD. In contrast to findings gained from exposure ...