Functional Diversity of Microbial Communities in the McMurdo Dry Valleys, Antarctica

In dryland ecosystems species richness for all domains decreases with increasing aridity. Several environmental stressors (desiccation, thermal and radiation stress) in hyper-arid drylands limit the complex life forms, thus microorganisms comprise most of the standing biomass and diversity in this p...

Full description

Bibliographic Details
Main Author: Wei, Ting-Shyang (Sean)
Other Authors: Pointing, Stephen, Higgins, Colleen
Format: Thesis
Language:English
Published: Auckland University of Technology 2016
Subjects:
16S
EPS
Online Access:https://hdl.handle.net/10292/10214
Description
Summary:In dryland ecosystems species richness for all domains decreases with increasing aridity. Several environmental stressors (desiccation, thermal and radiation stress) in hyper-arid drylands limit the complex life forms, thus microorganisms comprise most of the standing biomass and diversity in this particular ecosystem. Interestingly, these microorganisms colonize cryptic habitats that provide shelter from harsh environmental conditions. They form unique hypolithic, cryptoendolithic and chasmoendolithic communities beneath and within rocks and soil. The microbial diversity and community structure in refugia of the McMurdo Dry Valleys, the coldest and driest dryland on Earth, has been extensively studied using 16S rRNA gene surveys. These have revealed photoautotrophic cyanobacteria dominate hypoliths and endoliths whereas Actinobacteria dominate soil communities. Despite this, very little is known about the functionality of these communities and how they respond to environmental stress. In the first part of this study, the GeoChip DNA microarray was used to interrogate carbon and nitrogen transformation pathways of asmoendoliths, hypoliths and soil communities in a maritime-influenced location, Miers Valley. The chasmoendoliths, and hypoliths were identified as the potential primary production sites since cyanobacterial rubisco signatures were not commonly recovered from soils. Other forms of rubisco originated from Proteobacteria and archaea were identified, suggesting that chemoautotrophic pathways also contributed to carbon fixation. All communities supported diverse carbohydrate transformation pathways. However, soil communities supported significantly greater aromatic carbon utilization genes than hypoliths and chasmoendoliths, and this was related to the recalcitrant ‘legacy’ carbon stored in Antarctic soils. For nitrogen fixation, all communities displayed the full suite of genes involved in nitrogen transformations. Soil communities generally supported slightly higher abundance of proteobacterial ...