Board # 65 : Low-cost Fixed-wing Construction Techniques for UAS Curriculum

Low-Cost Fixed-Wing Construction Techniques for UAS Curriculum The UNIVERSITY CENTER, one of six FAA test sites, has a dual role of exploring the application of Unmanned Aerial Systems (UAS) to academic and scientific research, and in evaluating safety considerations and operating practices in order...

Full description

Bibliographic Details
Main Authors: Michael C. Hatfield, Catherine F. Cahill, John Monahan
Format: Text
Language:unknown
Published: ASEE Conferences 2017
Subjects:
Online Access:http://peer.asee.org/27898
Description
Summary:Low-Cost Fixed-Wing Construction Techniques for UAS Curriculum The UNIVERSITY CENTER, one of six FAA test sites, has a dual role of exploring the application of Unmanned Aerial Systems (UAS) to academic and scientific research, and in evaluating safety considerations and operating practices in order to integrate UAS into the National Airspace Space. To meet these needs rapidly and efficiently, CENTER must integrate a wide variety of sensors onto UAS platforms in support of arctic research and public projects. In addition, some mission requirements dictate development of certain UAS components, or entire platforms, in order to satisfy necessary payload and flight performance characteristics. Central is the ability to rapidly create low-cost flight hardware utilizing 3D printing and composite layup techniques. To support the abbreviated fielding cycles often associated with arctic research and public safety missions, CENTER requires a rapid means of creating UAS components, both for rotary-wing and fixed-wing platforms. While rapid prototyping is commonly used in making components for widely popular rotary-wing UAS, much of this same technology may be harnessed and brought to bear on the design and fabrication of somewhat more complex fixed-wing aircraft in order to satisfy a broad set of mission flight envelopes. This approach has been applied to the development of fixed-wing UAS at the CENTER, such as the Lockheed Martin Stalker. While UNIVERSITY seeks to eventually develop an organic capability for constructing fixed-wing UAS of various shapes and sizes supporting a multitude of flight envelopes, this process may be applied to the repair or replacement of components for numerous UAS assets. The Stalker was selected as an initial testbed, as it fills a vital operational need, providing roughly 2 lbs payload for 2 hrs endurance. CENTER possesses a number of older Stalker airframes; however, these were provided after having exceeded their useful lifetime and most components no long flight worthy. By selecting an existing operational UAS for repair and study, CENTER is able to chart a logical path for technology development and flight certification purposes. Using a ‘crawl/walk/run’ approach, CENTER may incrementally develop technical expertise, first gaining basic skills in repairing existing components, then refining techniques necessary to build replacement components, and over time gaining the requisite knowledge and skills to build an entire UAS from scratch. In this way, students may methodically develop practical approaches for creating reliable, cost-efficient fixed-wing aircraft. On the other end of the spectrum, exposing students to challenging design projects in which particular performance characteristics must be highly optimized (eg, AIAA Design/Build/Fly competition), or the use of radically different construction techniques (eg, balsa wood ribs reinforced with carbon fiber tape, or mylar wing surfaces) can provide invaluable learning experiences which the student can then apply later design projects. By honing these techniques over time, in a less optimized and competitive environment, these techniques can lead to breakthroughs in practical UAS design methodology. With sufficient practice and experience, these skills allow students to build practical, low-cost UAS supporting a wide range of payload and flight envelope requirements. These can be matured and standardized to form a fleet of reliable, inexpensive UAS capable of satisfying numerous operational missions. What’s more, students are central to all aspects of the UAS lifecycle process, from mission inception through UAS development to mission accomplishment. Such experience is invaluable to providing students with key components of a quality UAS education and training program: mission requirements analysis, UAS design, flight operations, and data product generation. In addition, such a program is effective in generating student interest and support by industry and the local community. This paper will provide details of payloads/components fabricated for CENTER UAS assets supporting exciting arctic research, as well as lessons learned and efforts pushing this down to HS/MS students. Comment: 14 pages