Melting and fragmentation laws from the evolution of two large Southern Ocean icebergs estimated from satellite data

The evolution of the thickness and area of two large southern ocean icebergs, having drifted in open water for more than a year, is estimated through the combined analysis of altimeter data and visible satellite images. Most of the iceberg modelling studies uses two main melting formulations that ar...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Bouhier, Nicolas, Tournadre, Jean, Remy, Frederique, Gourves-cousin, Rozenn
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Gesellschaft Mbh 2018
Subjects:
Online Access:https://archimer.ifremer.fr/doc/00410/52119/52827.pdf
https://archimer.ifremer.fr/doc/00410/52119/52828.pdf
https://archimer.ifremer.fr/doc/00410/52119/57660.pdf
https://archimer.ifremer.fr/doc/00410/52119/57661.pdf
https://doi.org/10.5194/tc-12-2267-2018
https://archimer.ifremer.fr/doc/00410/52119/
Description
Summary:The evolution of the thickness and area of two large southern ocean icebergs, having drifted in open water for more than a year, is estimated through the combined analysis of altimeter data and visible satellite images. Most of the iceberg modelling studies uses two main melting formulations that are compared with the observed thickness evolution of our two icebergs, to test their validity in case of large icebergs. The first formulation, based on a fluid dynamics approach, would tend to underestimate basal melt rates, so that using the second one (using a thermodynamic budget consideration) may be more relevant. Fragmentation is, before melting, the major decay process of large icebergs, yet it is a complex and still poorly documented mechanism. A correlation analysis between the observed volume loss of our two icebergs and environmental parameters highlights those most likely to promote fragmentation. Consequently, a bulk model of fragmentation depending on ocean temperature and iceberg velocity is established and is shown to be able to reproduce well the observed volume variations. Finally, the size distribution of the calved pieces is estimated using both altimeter data and visible images and is found to be consistent with previous studies as typical of brittle fragmentation processes. These results are valuable to account for a more realistic representation of the freshwater flux constrained by large icebergs in models