Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia

Rock clasts entrained in glacial deposits sourced from the continental interior of Antarctica provide an innovative means to determine the age and composition of ice-covered crust. Zircon U-Pb ages from a suite of granitoid clasts collected in glacial catchments draining central East Antarctica thro...

Full description

Bibliographic Details
Published in:Precambrian Research
Main Authors: Goodge, John W., Fanning, C. Mark, Fisher, Christopher M., Vervoort, Jeffrey D.
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier
Subjects:
Online Access:http://hdl.handle.net/1885/139044
https://doi.org/10.1016/j.precamres.2017.07.026
https://openresearch-repository.anu.edu.au/bitstream/1885/139044/4/01%20Goodge%20J%20W%20et%20al%20Proterozoic%20crustal%20evolution%202017.pdf.jpg
Description
Summary:Rock clasts entrained in glacial deposits sourced from the continental interior of Antarctica provide an innovative means to determine the age and composition of ice-covered crust. Zircon U-Pb ages from a suite of granitoid clasts collected in glacial catchments draining central East Antarctica through the Transantarctic Mountains show that crust in this region was formed by a series of magmatic events at ∼2.01, 1.88–1.85, ∼1.79, ∼1.57, 1.50–1.41, and 1.20–1.06 Ga. The dominant granitoid populations are ca. 1.85, 1.45 and 1.20–1.06 Ga. None of these igneous ages are known from limited outcrop in the region. In addition to defining a previously unrecognized geologic history, zircon O and Hf isotopic compositions from this suite have: (1) mantle-like δ18O signatures (4.0–4.5‰) and near-chondritic Hf-isotope compositions (εHf ∼ +1.5) for granitoids of ∼2.0 Ga age; (2) mostly crustal δ18O (6.0–8.5‰) and variable Hf-isotope compositions (εHf = −6 to +5) in rocks with ages of ∼1.88–1.85, ∼1.79 and ∼1.57 Ga, in which the ∼1.88–1.79 Ga granitoids require involvement of older crust; (3) mostly juvenile isotopic signatures with low, mantle-like δ18O (∼4–5‰) and radiogenic Hf-isotope signatures (εHf = +6 to +10) in rocks of 1.50–1.41 Ga age, with some showing crustal sources or evidence of alteration; and (4) mixed crustal and mantle δ18O signatures (6.0–7.5‰) and radiogenic Hf isotopes (εHf = +3 to +4) in rocks of ∼1.2 Ga age. Together, these age and isotopic data indicate the presence in cratonic East Antarctica of a large, composite igneous province that formed through a punctuated sequence of relatively juvenile Proterozoic magmatic events. Further, they provide direct support for geological correlation of crust in East Antarctica with both the Gawler Craton of present-day Australia and Proterozoic provinces in western Laurentia. Prominent clast ages of ∼2.0, 1.85, 1.57 and 1.45 Ga, together with sediment source linkages, provide evidence for the temporal and spatial association of these cratonic elements in the ...