Enhanced western mediterranean rainfall during past interglacials driven by North Atlantic pressure changes

International audience There is increasing concern with anthropogenic greenhouse gas emissions that ocean warming, in concert with summer and winter precipitation changes, will induce anoxia in multiple ocean basins, such as in the Mediterranean Sea. Although the hydrological changes in the eastern...

Full description

Bibliographic Details
Published in:Quaternary International
Main Authors: Dixit, Yama, Toucanne, Samuel, Fontanier, Christophe, Pasquier, Virgil, Lora, Juan, Jouet, Gwenael, Tripati, Aradhna
Other Authors: Laboratoire Géosciences Océan (LGO), Université de Bretagne Sud (UBS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Interdisciplinary Graduate School for the Blue planet, ANR-17-EURE-0015,ISBlue,Interdisciplinary Graduate School for the Blue planet(2017)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.univ-brest.fr/hal-03027445
https://hal.univ-brest.fr/hal-03027445/document
https://hal.univ-brest.fr/hal-03027445/file/S1040618220304675.pdf
https://doi.org/10.1016/j.quaint.2020.08.017
Description
Summary:International audience There is increasing concern with anthropogenic greenhouse gas emissions that ocean warming, in concert with summer and winter precipitation changes, will induce anoxia in multiple ocean basins, such as in the Mediterranean Sea. Although the hydrological changes in the eastern Mediterranean are quite well constrained, quantitative evidence of changes in sea surface temperature (SST) and winter rainfall in the western Mediterranean across the past interglacials is relatively scarce. In this study, we use a combination of trace element (Ba/Ca and Mg/Ca) and stable oxygen isotope composition of planktonic foraminifera from a sediment core located off the Golo River, Corsica (northern Tyrrhenian Sea) to reconstruct variations in SSTs and sea surface salinities (SSS) during the Holocene (MIS 1) and warm periods of the past two interglacials (MIS 5, 7). We also analyse PMIP3 model simulations for the mid-Holocene to investigate the mechanism for moisture transport in the western Mediterranean. Our Mg/Ca-SSTs, Ba/Ca-salinity and derived δ18O-seawater records suggest that the warm periods of the past interglacials were characterized by high river discharge and lower SSS in the northern Tyrrhenian Sea. Since this region is ideally located on the trajectory of wintertime storm tracks across the North Atlantic into the Mediterranean Sea and is also outside the influence of the ITCZ-controlled summer monsoon rains, we suggest enhanced winter rainfall during the past interglacials. Our analysis of PMIP3 model simulations for mid-Holocene also support increased south-westerly moisture transport into the western Mediterranean originating from the North Atlantic. We also find evidence that long-term amplitude of the salinity decrease tightly follows eccentricity. We suggest that these hydrologic changes in the western Mediterranean, and the northern Mediterranean borderlands as a whole, were a contributing factor, together with local cyclogenesis and African summer monsoon rainfall, to basin-wide anoxia ...