Nanometre-scale infrared chemical imaging of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMs)

International audience Aims. The composition of comets and asteroids sheds light on the formation and early evolution of the solar system. The study of micrometeorites containing large concentrations of carbonaceous material (i.e. ultra-carbonaceous antarctic micrometeorites, UCAMMs) allows for uniq...

Full description

Bibliographic Details
Published in:Astronomy & Astrophysics
Main Authors: Mathurin, Jérémie, Dartois, Emmanuel, Pino, Thomas, Engrand, Cécile, Duprat, Jean, Deniset-Besseau, Ariane, Borondics, Ferenc, Sandt, Christophe, Dazzi, Alexandre
Other Authors: Laboratoire de Chimie Physique D'Orsay (LCPO), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-18-CE31-0011,COMETOR,Origine de la poussière cométaire(2018)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.science/hal-02073521
https://hal.science/hal-02073521/document
https://hal.science/hal-02073521/file/aa33957-18.pdf
https://doi.org/10.1051/0004-6361/201833957
Description
Summary:International audience Aims. The composition of comets and asteroids sheds light on the formation and early evolution of the solar system. The study of micrometeorites containing large concentrations of carbonaceous material (i.e. ultra-carbonaceous antarctic micrometeorites, UCAMMs) allows for unique information on the association of minerals and organics at surface of icy objects (comets) to be obtained.Methods. In this work we map the organic matter of UCAMMs collected in the Antarctic snow, at sub-wavelength spatial scales using the Atomic Force Microscope InfraRed (AFMIR) technique. The sample preparation did not involve any chemical pretreatment to extract organic matter. The AFMIR measurements were performed on a limited spectral coverage (1900–1350 cm−1) allowing chemical functional groups to be imaged at spatial scales relevant to the study of micrometeorites.Results. The AFMIR images reveal the variability of the functional groups at very small scales and the intimate association of carbon- and oxygen-bearing chemical bonds. We demonstrate the possibility to potentially separate the olefinic and aromatic C=C bonding in the subcomponents of the UCAMM fragment. These variations probably originate in the early mixing of the different reservoirs of organic matter constituting these dust particles. The measurements demonstrate the potential for analysing such complex organic-matter – mineral association at scales below the diffraction limit. The development of such studies and extension to the full infrared range spectral coverage will drive a new view on the vibrational infrared analysis of interplanetary material.Key words: astrochemistry / comets: general / meteorites, meteors, meteoroids / techniques: imaging spectroscopy / methods: laboratory: solid state / interplanetary medium