Physiological responses to temperature in Merizodus soledadinus (Col., Carabidae), a subpolar carabid beetle invading sub-Antarctic islands

International audience Recent human activities and rising air temperature have increased the vulnerability of sub-Antarctic islands to alien species. At the Kerguelen Islands, the predaceous ground beetle Merizodus soledadinus is the only invasive insect originating from the southern cold temperate...

Full description

Bibliographic Details
Published in:Polar Biology
Main Authors: Laparie, M., Renault, D
Other Authors: Unité de recherche Zoologie Forestière (URZF), Institut National de la Recherche Agronomique (INRA), Ecosystèmes, biodiversité, évolution Rennes (ECOBIO), Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), This research was supported by the Institut Polaire Francais (IPEV, programme 136), the CNRS (Zone-Atelier deRecherches sur l’Environnement Antarctique et Subantarctique), and the Agence Nationale de la Recherche (ANR-07-VULN-004, Vulnerability of native communities to invasive insects and climate change in sub-Antarctic Islands,EVINCE). The authors thank INEE-CNRS for the funding of the 'ALIENS' application (ENVIROMICS call 2014)., ANR-07-VULN-0004,EVINCE,Vulnerability of native communities to invasive insects and climate change in sub-antarctic islands.(2007)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://univ-rennes.hal.science/hal-01255879
https://univ-rennes.hal.science/hal-01255879/document
https://univ-rennes.hal.science/hal-01255879/file/Physiological%20responses%20to%20temperature%20in%20Merizodus%20soledadinus.pdf
https://doi.org/10.1007/s00300-014-1600-0
Description
Summary:International audience Recent human activities and rising air temperature have increased the vulnerability of sub-Antarctic islands to alien species. At the Kerguelen Islands, the predaceous ground beetle Merizodus soledadinus is the only invasive insect originating from the southern cold temperate area (native from Patagonia, Tierra del Fuego and Falkland Islands). This austral origin raises the question of the limits of its physiological tolerance and capability to withstand (1) global change and (2) warmer climates of archipelagos where its accidental transportation could be facilitated from the Kerguelen Islands (namely Amsterdam and Saint Paul). Using gas chromatography/mass spectrometry metabolomics, we compared metabotypes of adults exposed to different temperatures (0, 4, 8, 12, 16, 20 °C). All individuals survived after 2 weeks regardless of the temperature they were exposed to. The physiological changes observed were consistent with increased metabolic rate at increased temperatures, without extreme metabotypes that are characteristic of acute stress. First cues of sublethal stress were observed after prolonged exposure to 20 °C, a warm regime unrealistic for such duration in sub-Antarctic Islands. Overall, M. soledadinus’ thermal tolerance exceeded temperatures currently experienced in nature, suggesting that climate warming may boost its invasion by eliciting its activity and broadening habitat suitability in both invaded and still pristine islands. This thermal tolerance may allow survival aboard ships and development in sub-Antarctic islands with conditions warmer than the Kerguelen Islands, such as Amsterdam and St Paul. Stringent biosecurity measures are thus needed to prevent transfer from Kerguelen to these islands. The native range of this predaceous beetle limited to the Falkland Islands and southernmost South America may be partly constrained by factors other than temperature, such as desiccation, predation or competition