A new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem

2 Specific goal 1. Study the performance of the NSGA-II optimising four criteria: minimum evolution, least squares, maximum parsimony and likelihood. TOTAL We modified our previous published MO-MA inference algorithm that optimises parsimony and likelihood to include the minimum evolution and least-...

Full description

Bibliographic Details
Main Authors: Villalobos - Cid, Manuel
Other Authors: Universidad De Santiago De Chile
Format: Report
Language:unknown
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10533/49297
_version_ 1824228117693071360
author Villalobos - Cid
Manuel
author2 Universidad De Santiago De Chile
author_facet Villalobos - Cid
Manuel
author_sort Villalobos - Cid
collection Repositorio ANID (Agencia Nacional de Investigación y Desarrollo)
description 2 Specific goal 1. Study the performance of the NSGA-II optimising four criteria: minimum evolution, least squares, maximum parsimony and likelihood. TOTAL We modified our previous published MO-MA inference algorithm that optimises parsimony and likelihood to include the minimum evolution and least-squares as criteria. We used classical data sets from the related literature to evaluate the algorithm and performed applied case studies using our data related to yeast strains. We formalised the results in the related publications (10.1109/CIBCB48159.2020.9277700; 10.1016/j.biosystems.2022.104606). Additionally, we adapted this algorithm to successfully deal with classification and feature selection problems testing new operators in the field of healthcare management (10.1109/SCCC51225.2020.9281282; 10.1109/SCCC54552.2021.9650434). 3 Specific goal 2. Design of new strategies to infer phylogenetic trees based on the current modifications proposed by the literature for the NSGA-II to treat many-objective optimisation problems. TOTAL To improve MO-MA's performance treating large data sets, we replaced its topological operations based on graphs with matrix operations. It allows us the inclusion of additional inference criteria without increasing the consumption time. Thanks to that, we designed advanced algorithms, including multi-modal and NSGA-III operations, that were presented in the published manuscripts. 4 Specific goal 3. Characterise different crossover and mutation strategies applied to the many-objective phylogenetic inference problem, and its effect on the search process. TOTAL We built and tested different operators to design our multi- and many-optimisations inference algorithms: nearest neighbour interchange, subtree prune and regraft, and tree bisection and reconnection moves. Also, we tested different topological metrics to study the decision space. Additionally, we evaluated the performance of the prune-deleted and other crossover operators. We included the results in our mentioned publications. 5 ...
format Report
genre Antártica
genre_facet Antártica
geographic Magallanes
Valparaíso
Bío Bío
General Bernardo O'Higgins
geographic_facet Magallanes
Valparaíso
Bío Bío
General Bernardo O'Higgins
id ftanid:oai:repositorio.anid.cl:10533/49297
institution Open Polar
language unknown
long_lat ENVELOPE(-62.933,-62.933,-64.883,-64.883)
ENVELOPE(-62.983,-62.983,-64.833,-64.833)
ENVELOPE(-66.450,-66.450,-66.467,-66.467)
ENVELOPE(-57.900,-57.900,-63.317,-63.317)
op_collection_id ftanid
op_coverage Región de Tarapacá
Región de Antofagasta
Región de Atacama
Región de Coquimbo
Región de Valparaíso
Región del Libertador General Bernardo O'Higgins
Región del Maule
Región del Bío-Bío
Región de La Araucanía
Región de Los Lagos
Región Aysén del General Carlos Ibáñez del Campo
Región de Magallanes y la Antártica Chilena
Región Metropolitana de Santiago
Región de Los Ríos
Región de Arica y Parinacota
Región de Ñuble
op_relation 3190822
Masculino
https://hdl.handle.net/10533/49297
op_rights Atribución-NoComercial-SinDerivadas 3.0 Chile
http://creativecommons.org/licenses/by-nc-sa/3.0/cl/
publishDate 2023
record_format openpolar
spelling ftanid:oai:repositorio.anid.cl:10533/49297 2025-02-16T15:00:13+00:00 A new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem Villalobos - Cid Manuel Universidad De Santiago De Chile Región de Tarapacá Región de Antofagasta Región de Atacama Región de Coquimbo Región de Valparaíso Región del Libertador General Bernardo O'Higgins Región del Maule Región del Bío-Bío Región de La Araucanía Región de Los Lagos Región Aysén del General Carlos Ibáñez del Campo Región de Magallanes y la Antártica Chilena Región Metropolitana de Santiago Región de Los Ríos Región de Arica y Parinacota Región de Ñuble 2023-08-24T13:34:49Z application/pdf https://hdl.handle.net/10533/49297 unknown 3190822 Masculino https://hdl.handle.net/10533/49297 Atribución-NoComercial-SinDerivadas 3.0 Chile http://creativecommons.org/licenses/by-nc-sa/3.0/cl/ many-objective optimisation bioinformatics phylogenetic inference Ciencias De La Informacion Y Bioinformatica Informe Final info:eu-repo/semantics/report 2023 ftanid 2025-01-20T05:58:31Z 2 Specific goal 1. Study the performance of the NSGA-II optimising four criteria: minimum evolution, least squares, maximum parsimony and likelihood. TOTAL We modified our previous published MO-MA inference algorithm that optimises parsimony and likelihood to include the minimum evolution and least-squares as criteria. We used classical data sets from the related literature to evaluate the algorithm and performed applied case studies using our data related to yeast strains. We formalised the results in the related publications (10.1109/CIBCB48159.2020.9277700; 10.1016/j.biosystems.2022.104606). Additionally, we adapted this algorithm to successfully deal with classification and feature selection problems testing new operators in the field of healthcare management (10.1109/SCCC51225.2020.9281282; 10.1109/SCCC54552.2021.9650434). 3 Specific goal 2. Design of new strategies to infer phylogenetic trees based on the current modifications proposed by the literature for the NSGA-II to treat many-objective optimisation problems. TOTAL To improve MO-MA's performance treating large data sets, we replaced its topological operations based on graphs with matrix operations. It allows us the inclusion of additional inference criteria without increasing the consumption time. Thanks to that, we designed advanced algorithms, including multi-modal and NSGA-III operations, that were presented in the published manuscripts. 4 Specific goal 3. Characterise different crossover and mutation strategies applied to the many-objective phylogenetic inference problem, and its effect on the search process. TOTAL We built and tested different operators to design our multi- and many-optimisations inference algorithms: nearest neighbour interchange, subtree prune and regraft, and tree bisection and reconnection moves. Also, we tested different topological metrics to study the decision space. Additionally, we evaluated the performance of the prune-deleted and other crossover operators. We included the results in our mentioned publications. 5 ... Report Antártica Repositorio ANID (Agencia Nacional de Investigación y Desarrollo) Magallanes ENVELOPE(-62.933,-62.933,-64.883,-64.883) Valparaíso ENVELOPE(-62.983,-62.983,-64.833,-64.833) Bío Bío ENVELOPE(-66.450,-66.450,-66.467,-66.467) General Bernardo O'Higgins ENVELOPE(-57.900,-57.900,-63.317,-63.317)
spellingShingle many-objective optimisation bioinformatics phylogenetic inference
Ciencias De La Informacion Y Bioinformatica
Villalobos - Cid
Manuel
A new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem
title A new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem
title_full A new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem
title_fullStr A new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem
title_full_unstemmed A new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem
title_short A new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem
title_sort new evolutionary optimisation approach to deal with the many-objective phylogenetic inference problem
topic many-objective optimisation bioinformatics phylogenetic inference
Ciencias De La Informacion Y Bioinformatica
topic_facet many-objective optimisation bioinformatics phylogenetic inference
Ciencias De La Informacion Y Bioinformatica
url https://hdl.handle.net/10533/49297