Description
Summary:Maintenance and Update Frequency: notPlanned Statement: The ocean model used is ROMS, a primitive equation, finite difference model with a terrain following vertical coordinate system [HAIDVOGEL et al., 2008; Shchepetkin and McWilliams, 2009]. The model is configured with an offset pole and a circumpolar domain extending to 30◦S (Figure 1a). The horizontal resolution of the model is 1⁄4◦ and there are 31 vertical layers with smaller spacing near the surface and the bottom. The model topography comes from the 1-minute Refined Topography (RTopo-1) dataset includes elevation of the bedrock and the base of several ice shelves [Timmermann et al., 2010]. The domain encompasses the Antarctic Circumpolar Current (ACC), including its major fronts, and extends north to include the entire Kerguelen Plateau and downstream eddy field. The model set-up, including the choice of mixing and advection schemes, mostly follows that of Galton-Fenzi et al. [2012]. The initial conditions of the seawater are a climatological mean value of the ECCO2 [Menemenlis et al., 2008; Wunsch et al., 2009] re-analysis interpolated on to the ROMS grid. To assist with initial model stability, the sea water is stationary at time t=0. The baroclinic time-step for the model is 300s and 10s for the barotropic time-step. Polynyas have been shown to be important locations for increased primary production due to the presence of open water year round [Arrigo and van Dijken, 2003]. This in turn leads to increased populations of secondary producers such as zooplankton and krill and increased targeting of these regions by higher predators [Raymond et al., 2014]. Furthermore, brine rejection during the formation of sea ice in polynyas is considered important in the creation of dense water that sinks and is considered important in benthic-pelagic coupling, leading to an enhanced benthic community [?]. In order to capture these processes, the correct location of polynyas is essential and so for the sea ice region the open ocean boundary conditions are ...