Data for: Modelling ocean wave transfer to Ross Ice Shelf flexure

Progress Code: completed Purpose To predict Ross Ice Shelf flexure in response to ocean wave forcing. A mathematical model (Bennetts and Meylan, 2021, doi.org/10.1137/20M13851) has been used to make predictions of ocean wave transfer to Ross Ice Shelf flexure. The transfer is considered along transe...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/data-for-modelling-shelf-flexure/2823039
Description
Summary:Progress Code: completed Purpose To predict Ross Ice Shelf flexure in response to ocean wave forcing. A mathematical model (Bennetts and Meylan, 2021, doi.org/10.1137/20M13851) has been used to make predictions of ocean wave transfer to Ross Ice Shelf flexure. The transfer is considered along transects of the Ross Ice Shelf and adjoining open ocean, where the ice shelf thickness and seabed profiles along the transects are sampled from the Bedmap2 dataset (Fretwell et al, 2013, doi.org/10.5194/tc-7-375-2013). Our dataset consists of MAT-files, where each file is for a particular transect and holds two structures: 'data_I' as input data and 'data_o' for the model output data. The input data are the profiles from Bedmap2: 'thick' is the shelf thickness, 'draft' is the shelf draught; and 'bed' is the seabed elevation. They are all in vector form with 2001 sample points along the shelf, which was found to give model outputs accurate to 95%. The input data also contains: a 1x2 vector 'L_vec', for which the first entry is the shelf length, and the second entry is the length of the adjoining open ocean, where both values are in metres; and a 1x2 vector 'Int_vec', for which the first entry is the total number of sample points (ocean + shelf) and the second entry is the number of points in the shelf only. The output date are the three matrices where the rows correspond to different wave period and columns are distances along the transect: 'eta_w' is the water displacement (dimensionless); 'eta_s' is the shelf displacement (dimensionless); and 'str' is the flexural shelf strain (1/metres). All three outputs are normalised by the incident amplitude, noting that the model is linear. The output data also contains: a 1x300 vector containing the wave periods 'T', which are log-spaced between 10s and 1000s. The data are divided into two folders: validation/ and transects/. The first group (validation/) are used to validate the model predictions against the observations of Chen et al (Geophysical Research Letters, 2019, ...