Biology of Antarctic Algae

Progress Code: completed Statement: Dates provided in temporal coverage are approximate only. Metadata record for data from ASAC Project 102 See the link below for public details on this project. From the abstracts of some of the referenced papers: Six species of marine microalgae, namely Phaeodacty...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/biology-antarctic-algae/2822274
Description
Summary:Progress Code: completed Statement: Dates provided in temporal coverage are approximate only. Metadata record for data from ASAC Project 102 See the link below for public details on this project. From the abstracts of some of the referenced papers: Six species of marine microalgae, namely Phaeodactylum tricornutum Bohlin, Dunaliella tertiolecta Butcher, Isochrysis galbana Parke, Porphyridium purpureum (Bory) Ross, Chroomonas sp., and Oscillatoria woronichinii Anis., have been examined with respect to their gas exchange characteristics and the inorganic carbon species taken up by the cells from the bulk medium. All species showed a high affinity, in photosynthesis, for inorganic carbon and low CO2 compensation concentrations. Such data are suggestive of operation of a 'CO2-concentrating mechanism' in these microalgae. Direct measurements of internal organic carbon pools in four of the species studied confirm this (O. woronichinii and Chroomonas were not tested). By comparison of achieved photosynthetic rates with calculated rates of CO2 supply from the dehydration of bicarbonate, it was shown that Phaeodactylum, Porphyridium and Dunaliella could utilise the bicarbonate present in the medium. Data for the other species were inconclusive although the pH dependence of K 1/2CO2 for photosynthesis by Oscillatoria indicated that this species too could utilise bicarbonate. Such observations could, however, not be used as evidence that, at least in the eucaryotic algae examined, bicarbonate was the inorganic carbon species crossing the plasmalemma as Phaeodactylum, Porphyridium and Dunaliella, and Isochrysis all showed the presence of carbonic anhydrase activity in intact cells as well as in crude extracts. 'External' carbonic anhydrase activity represented from 1/4 to 1/2 of the total activity in the cells of these algae. It is concluded that, as a consequence of a CO2-concentrating mechanism, photorespiration was suppressed in the marine microalgae examined although the data obtained did not allow any firm ...