40Ar/39Ar geochronology data of basalt samples from the Kerguelen Plateau and Broken Ridge

Progress Code: completed 40Ar/39Ar geochronology data of basalt samples from the Kerguelen Plateau and Broken Ridge The samples include basalts from ODP drilling cores and dredge sites. The drilling core samples were stored in the Kochi Core Centre, Japan and the dredged samples were stored in the N...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/40ar39ar-geochronology-basalt-broken-ridge/2822226
Description
Summary:Progress Code: completed 40Ar/39Ar geochronology data of basalt samples from the Kerguelen Plateau and Broken Ridge The samples include basalts from ODP drilling cores and dredge sites. The drilling core samples were stored in the Kochi Core Centre, Japan and the dredged samples were stored in the National Museum of Natural History, France. Analytical methods of the 40Ar/39Ar geochronology data: Samples were crushed and minerals/groundmass were separated using a Frantz magnetic separator. Plagioclase, pyroxene, amphibole, sericite, and basaltic glass crystals and groundmass were separated from either the 125–212 μm or the 212–355 μm size fractions using a Frantz isodynamic magnetic separator. Minerals and groundmass were subsequently hand-picked grain-by-grain under a binocular stereomicroscope. Plagioclase and groundmass were further leached using diluted HF (2N) for 5 minutes and thoroughly rinsed in distilled water. Samples were loaded into several large wells of 1.9cm diameter and 0.3 cm depth aluminium discs. The discs were Cd-shielded to minimise undesirable nuclear interference re-actions and irradiated for 40 hours in the Oregon State University nuclear reactor (USA) in the central position. The samples were irradiated alongside FCs and GA1550 standards, for which ages of 28.294 ± 0.037 Ma and 99.738 ± 0.100 Ma were used, respectively. The 40Ar/39Ar analyses were performed at the Western Australian Argon Isotope Facility at Curtin University. The samples were step-heated using a continuous 100 W PhotonMachine© CO2 (IR, 10.4 µm) laser fired on the crystals during 60 seconds. Each of the standard crystals was fused in a single step. The gas was purified in an extra low-volume stainless steel extraction line of 240cc and using one SAES AP10 and one GP50 getter. Ar isotopes were measured in static mode using a low volume (600 cc) ARGUS VI mass spectrometer from Thermofisher© set with a permanent resolution of ~200. Measurements were carried out in multi-collection mode using four faradays to measure mass ...