The effects of UV-B radiation on the nutritional composition of Antarctic phytoplankton

Progress Code: completed Statement: Values provided in temporal and spatial coverage are approximate only. The actual piece of equipment used was an International Light IL 1700Radiometer equipped with broad band detectors to measure PAR, UV-A and erythemal UV-B. The effects of UV-B radiation on the...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
PAR
AMD
Online Access:https://researchdata.edu.au/the-effects-uv-antarctic-phytoplankton/2820210
Description
Summary:Progress Code: completed Statement: Values provided in temporal and spatial coverage are approximate only. The actual piece of equipment used was an International Light IL 1700Radiometer equipped with broad band detectors to measure PAR, UV-A and erythemal UV-B. The effects of UV-B radiation on the fatty acid, total lipid and sterol composition and content of three Antarctic marine phytoplankton were examined in a preliminary culture experiment. Exponential growth phase cultures of the diatoms Odontella weissflogii and Chaetoceros simplex and the Haptophyte Phaeocystis antarctica were grown at 2 (plus or minus 1)degrees C and exposed to 16.3 (plus or minus 0.7) W.m-2 photosynthetically active radiation (PAR). UV-irradiated treatments were exposed to constant UV-A (4.39 (plus or minus 0.20) W.m-2) and low (0.37 W.m-2) or high UV-B (1.59 W.m-2). UV-B treatments induced species specific changes in lipid content and composition. The sterol, fatty acid and total lipid content and profiles for O. weissflogii changed little under low UV-B when compared with control conditions (PAR alone), but showed a decrease in the lipid content per cell under high UV-B treatment. In contrast, when P. antarctica was exposed to low UV-B irradiance, storage lipids were reduced and structural lipids increased indicating that low UV-B enhanced cell growth and metabolism. P. antarctica also contained a higher proportion of polyunsaturated fatty acids under low UV-B in comparison with PAR irradiated control cultures. The flagellate life stage of P. antarctica died under high UV-B irradiation. However, exposure of P. antarctica to high UV-B irradiance increased total lipid, triglyceride and free fat. The effect of UV-B irradiances on the lipid content of Antarctic marine phytoplankton is species specific. Changes in ambient UV-B may alter the nutritional quality of food available to higher trophic levels. EXPERIMENTAL All measurements of irradiance were made with an International Light IL 1700 Radiometer equipped with broad band ...