Structure and geochemistry of Macquarie Island oceanic crust

Progress Code: completed Statement: Values provided in temporal coverage are approximate only. Owing to the fact that the principal investigator died before data were able to be archived, the only available data are in the form of the referenced paper, which is available as a PDF download to AAD sta...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/structure-geochemistry-macquarie-oceanic-crust/2820204
Description
Summary:Progress Code: completed Statement: Values provided in temporal coverage are approximate only. Owing to the fact that the principal investigator died before data were able to be archived, the only available data are in the form of the referenced paper, which is available as a PDF download to AAD staff only. From the referenced papers: Macquarie Island is an exposure above sea level of the Macquarie Ridge Complex, on the boundary between the Australian and Pacific plates south of New Zealand. Geodynamic reconstructions show that at ca. 12-9.5 Ma, oceanic crust of the Macquarie Island region was created at this plate boundary within a system of short spreading-ridge segments linked by large-offset transform faults. At this time, the spreading rate was slowing (less than 10 mm/yr half-spreading rate) and magmatism was waning. Probably before 5 Ma, and possibly before the extinct spreading ridge had subsided, the plate boundary became obliquely convergent, and crustal blocks were rotated, tilted, and uplifted along the ridge to form the island. Planation by marine erosion has exposed sections through the oceanic crust. The magmatism that built the oceanic crust produced melts similar in composition to the widespread normal to enriched mid-oceanic ridge basalt (N- to E-MORB) suite found in many spreading ridges, but the melts ranged beyond E-MORB to primitive, highly enriched, and silica-undersaturated compositions. These compositions form one end member of a continuum from MORB but seem not to have been derived from a MORB-source mantle, despite sharing a Pacific MORB isotopic signature. The survival of these primitive melts may be due to their origin in a slow-spreading system that must have been closing down as extension along the plate boundary gave way to transpression, putting a stop to the upwelling of asthenosphere and decompression melting. In a more energetic, faster-spreading system, mixing would have been more efficient, the presence of this end member could not easily have been inferred from its ...