Photosynthetic response of sea ice algae to low iron

Progress Code: completed Purpose To determine the response of sea ice to high and low light under iron limiting and non limiting conditions Fast repetition rate fluorometer (FRRF) study of sea ice algae in low iron conditions. Algae were grown in an ice tank and the measurements were made at the end...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/photosynthetic-response-sea-low-iron/2818212
Description
Summary:Progress Code: completed Purpose To determine the response of sea ice to high and low light under iron limiting and non limiting conditions Fast repetition rate fluorometer (FRRF) study of sea ice algae in low iron conditions. Algae were grown in an ice tank and the measurements were made at the end with a Chelsea Insrtuments FRRF. Materials and Methods (see the download document for original formatting and formulas) 1. Ice tank incubation The polar pennate diatom Fragilariopsis cylindrus, isolated from Antarctic pack ice in 2015 (Davis station, East Antarctica) was incubated in a purpose designed ice tank (Island Research, Tasmania). The ice tank, which was contructed of titanium to minimise dissolved Fe, was placed into a freezer (–20 degrees C), and the ice thickness and temperature gradient controlled by interaction between a basal heater and the adjustable ambient freezer temperature (see Kennedy et al., 2012). This enabled an ice thickness of approximately 5.5 cm to be maintained during the experiment. The diatom F. cylindrus was incubated in Aquil media (Price et al. 1989) buffered with ethylenediaminetetraacetic acid (EDTA) at 150 micro mol photons m−2 s−1 (PAR), a salinity of 35, and a Fe concentration of 400 nM, where the concentration of total inorganic forms of Fe (Fe') was 1.54 nM, this being continuously supplied to the medium and the exact value calculated using the software Visual MINTEQ, ver. 3.1 (https://vminteq.lwr.kth.se). Before a freezing cycle started, the seawater temperature was maintained at 2.5 degrees C, and a sample was obtained to assess the original physiological state of the algae (Day−5, hereafter). After obtaining the sample, the seawater temperature was set to −1.8 degrees C to initiate ice formation in the ice tank. Once ice had formed at Day−2, the under-ice seawater was partially replaced with ultrapure water to reduce the salinity down to 35, because the salinity had increased (to approximately 38) as a result of brine rejection from the ice. After a 2-day acclimation ...