Data: The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities

Progress Code: completed Statement: None Purpose As a data repository for the paper. Data repository for the paper: "The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities" Graeme F. Clark, Jonathan S. Stark, Anne S. Palmer, Martin J. Riddle, Emm...

Full description

Bibliographic Details
Other Authors: AADC (owner), AADC, DATA OFFICER (distributor), AADC, DATA OFFICER (custodian), AU/AADC > Australian Antarctic Data Centre, Australia (hasAssociationWith), Australian Antarctic Data Centre (publisher), Australian Antarctic Division (sponsor), CLARK, GRAEME F. (collaborator), CLARK, GRAEME F. (hasPrincipalInvestigator), CLARK, GRAEME F. (author), Clark, G.F. and Stark, J.S. (originator), STARK, JONATHAN SEAN (collaborator), STARK, JONATHAN SEAN (hasPrincipalInvestigator)
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/data-the-roles-benthic-communities/2816715
Description
Summary:Progress Code: completed Statement: None Purpose As a data repository for the paper. Data repository for the paper: "The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities" Graeme F. Clark, Jonathan S. Stark, Anne S. Palmer, Martin J. Riddle, Emma L. Johnston. PLoS ONE Data are boulder communities (epifauna), annual light budgets, and sediment traps. See the paper for more details. ABSTRACT On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is ...