Description
Summary:This dataset includes predictions of bedrock motion due to glacial isostatic adjustment from a range of published forward and inverse models. The predictions are only for the geodetic GPS sites considered within AAS4318: Site(4-character ID), longitude (decimal degrees), latitude (decimal degrees) CAS1 110.519729 -66.283391 DAV1 77.972630 -68.577332 BHIL 100.599007 -66.251025 CAD2 86.100628 -68.566511 CAD3 96.363668 -66.521104 CAD4 99.143786 -67.419656 CAD5 107.764024 -66.552476 CAD6 120.990964 -66.789283 The file is ascii text with each row the GIA prediction for one site. The columns are given as: Site(4-character ID) Latitude(decimal degrees) Lon(decimal degrees) G14(mm/yr) C18(mm/yr) REGINA(mm/yr) RATES(mm/yr) ICE6G_D IJ05R2_115kmLT(mm/yr) W12_best(mm/yr) Values are interpolated from the resolution of the grids as published using a bicubic interpolator using GMT5 grdtrack with default settings. The reference frame of the different GIA model predictions vary, with the forward models in centre-of-mass of the solid Earth (CE) and the inverse solutions likely in centre-of-mass of the whole Earth system (CM). The original publications should be checked to confirm this. References G14: Gunter, B. C., Didova, O., Riva, R. E. M., Ligtenberg, S. R. M., Lenaerts, J. T. M., King, M. A., van den Broeke, M. R., and Urban, T.: Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change, The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, 2014 C18: Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., and Blewitt, G. (2018). GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophysical Research Letters, 45, 2203– 2212. https://doi.org/10.1002/2017GL076644 REGINA: Ingo Sasgen, Alba Martín-Español, Alexander Horvath, Volker Klemann, Elizabeth J Petrie, Bert Wouters, Martin Horwath, Roland Pail, Jonathan L Bamber, Peter J Clarke, Hannes Konrad, Mark R Drinkwater, Joint inversion estimate of regional glacial isostatic adjustment in Antarctica considering a lateral varying Earth structure (ESA STSE Project REGINA), Geophysical Journal International, Volume 211, Issue 3, December 2017, Pages 1534–1553, https://doi.org/10.1093/gji/ggx368 RATES: Martín-Español, A. , Zammit-Mangion, A. , Clarke, P. J. , Flament, T. , Helm, V. , King, M. A. , Luthcke, S. B. , Petrie, E. , Rémy, F. , Schön, N. , Wouters, B. and Bamber, J. L. (2016): Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data , Journal of Geophysical Research: Earth Surface, 121 (2), pp. 182-200 . doi:10.1002/2015JF003550 ICE6G_D: Peltier, W.R., Argus, D.F. and Drummond, R. (2018) Comment on "An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model" by Purcell et al. J. Geophys. Res. Solid Earth, 123, 2019-2018, doi:10.1002/2016JB013844. IJ05R2_115kmLT: Ivins, E. R., James, T. S., Wahr, J., O. Schrama, E. J., Landerer, F. W., and Simon, K. M. (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction, J. Geophys. Res. Solid Earth, 118, 3126– 3141, doi:10.1002/jgrb.50208. W12_best: Whitehouse, P.L., Bentley, M.J., Milne, G.A., King, M.A. and Thomas, I.D. (2012), A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea‐level change and present‐day uplift rates. Geophysical Journal International, 190: 1464-1482. https://doi.org/10.1111/j.1365-246X.2012.05557.x