Quantitative radiolarian data collected from the 2017 RV Investigator voyage, IN2017_V01

Radiolarian data from IN2017_V01 These data were generated by Kelly-Anne Lawler (corresponding author, kelly-anne.lawler@anu.edu.au) with taxonomic assistance from Dr Giuseppe Cortese. These data are based on samples collected during voyage IN2017_V01 of the RV Investigator, co-chief scientists, Lea...

Full description

Bibliographic Details
Other Authors: LAWLER, KELLY-ANNE (hasPrincipalInvestigator), LAWLER, KELLY-ANNE (processor), CORTESE, GIUSEPPE (hasPrincipalInvestigator), CORTESE, GIUSEPPE (processor), Australian Antarctic Data Centre (publisher)
Format: Dataset
Language:unknown
Published: Australian Antarctic Data Centre
Subjects:
Online Access:https://researchdata.ands.org.au/quantitative-radiolarian-collected-voyage-in2017v01/1385777
https://doi.org/10.26179/5cd12873643f1
https://data.aad.gov.au/metadata/records/AAS_4333_IN2017_V01_Radiolarian_Data
http://nla.gov.au/nla.party-617536
Description
Summary:Radiolarian data from IN2017_V01 These data were generated by Kelly-Anne Lawler (corresponding author, kelly-anne.lawler@anu.edu.au) with taxonomic assistance from Dr Giuseppe Cortese. These data are based on samples collected during voyage IN2017_V01 of the RV Investigator, co-chief scientists, Leanne Armand and Phil O’Brien. The IN2017-V01 post-cruise report is available through open access via the e-document portal through the ANU library. https://openresearch-repository.anu.edu.au/handle/1885/142525 The preferred citation is: L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra, http://dx.doi.org/10.4225/13/5acea64c48693 Samples for radiolarian analysis were collected on board immediately after core recovery. Samples were air dried at ambient temperature (~21 degrees C), and their processing in preparation for microscopy was based on the method of Cortese and Prebble (2015). Cover slips were adhered to the slides using Canada Balsam and slides were observed using Olympus BH-2 inverted light microscope at up to 400x magnification. Slides were first counted to determine absolute radiolarian abundance (ARA) and, for samples where ARA was high enough, more than 400 individuals were identified per sample to species/subspecies or genus level. Taxonomic nomenclature used while preparing the dataset was per Lazarus et al. (2015) with additional clarification sought from the World Register of Marine Species (WoRMS Editorial Board, 2018) and radiolaria.org (radiolaria.org, 2018). Station_core Longitude Latitude C013_KC05 119.0183 -64.6538 C022_KC11 120.049 -65.1313 These data were collected to provide palaeoceanographic information. Cortese, G., and Prebble, J. (2015). A radiolarian-based modern analogue dataset for palaeoenvironmental reconstructions in the southwest Pacific. Marine Micropaleontology, 118, 34-49. WoRMS Editorial Board, (2018). World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Lazarus, D. B., Suzuki, N., Caulet, J.-P., Nigrini, C., Goll, I., Goll, R., Dolven, J.K. Diver, P. and Sanfilippo, A., (2015). An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs. Zootaxa, 3999(3), 310-333. radiolaria.org, 2018. radiolaria.org, (http://www.radiolaria.org/) Kelly-Anne Lawler and Giuseppe Cortese unpublished data