From systems to patterns and back - Exploring the spatial role of dynamic time and direction patterns in the area of regional planning

This master thesis presents a data-driven framework to explore the role of dynamic time and direction patterns in the area of Finnish Lapland in order to improve decision-making in urban planning and design tasks. The Arctic Ocean Railway project is chosen as a case study. In an era marked by dramat...

Full description

Bibliographic Details
Main Author: Grisiute, Ayda
Other Authors: Fricker, Pia, Taiteiden ja suunnittelun korkeakoulu, School of Arts, Design and Architecture, Aalto University, Aalto-yliopisto
Format: Master Thesis
Language:English
Published: 2020
Subjects:
Online Access:https://aaltodoc.aalto.fi/handle/123456789/43480
Description
Summary:This master thesis presents a data-driven framework to explore the role of dynamic time and direction patterns in the area of Finnish Lapland in order to improve decision-making in urban planning and design tasks. The Arctic Ocean Railway project is chosen as a case study. In an era marked by dramatic environmental, political and societal changes, the Arctic region becomes more global and complex. An increasing number of actors are involved in its spatial transformations. Due to melting ice, the Northern Sea Route gains attention from the shipping and trade industries that are manifested in new port and infrastructure projects. Eco-tourism is booming in the Arctic due to its imaginary remoteness, while local Indigenous People try to preserve traditional livelihoods. In order to cope with the increasing complexity of such dynamic urban and regional challenges, Systems Thinking, dynamic patterns, modelling and use of simulation are researched to open up novel ways for complex regional planning methods. This is achieved by designing an agent-based model and using different representation and abstraction features for different dynamic data packages. The project is integrated within the GAMA simulation platform (a modelling and simulation development environment for building spatially explicit agent-based simulations) and embedded in the MIT CityScope framework - a medium for both, analyzing agent’s behavioural patterns and displaying them to the relevant stakeholders. The project attempts to address the necessity to handle the increasing complexity by presenting a dynamic, evidence-based planning and decision support tool called CityScope Lapland. The main goal of CityScope Lapland is to use digital technologies to incorporate variables like time and direction in urban spatial analysis and methodology; secondly, to improve the accessibility of the decision-making process for non-experts through a tangible user interface, and third, to help users evaluate their decisions by creating a feedback through real-time ...