Flow resistance in environmental channels : focus on vegetation

This thesis aims to improve the reliability of the determination of flow resistance in environmentally acceptable channels and floodplains. Special emphasis was placed on addressing the hydraulic effects of vegetation. For this reason, laboratory flume studies with living vegetation were employed. T...

Full description

Bibliographic Details
Main Author: Järvelä, Juha
Other Authors: Department of Civil and Environmental Engineering, Rakennus- ja ympäristötekniikan osasto, Laboratory of Water Resources, Vesitalouden ja vesirakennuksen laboratorio, Aalto-yliopisto, Aalto University
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Helsinki University of Technology 2004
Subjects:
Online Access:https://aaltodoc.aalto.fi/handle/123456789/2422
Description
Summary:This thesis aims to improve the reliability of the determination of flow resistance in environmentally acceptable channels and floodplains. Special emphasis was placed on addressing the hydraulic effects of vegetation. For this reason, laboratory flume studies with living vegetation were employed. The most notable finding was that, when compared to leafless conditions, the presence of leaves increased the friction factor up to seven-fold. This was strongly dependent on the flow velocity. In addition, the linkage between flow resistance, channel properties, and physical habitat was investigated. For this purpose, field studies were conducted in degraded, restored, and natural channel reaches. To determine friction factor f or Manning's n for non-submerged woody vegetation, a new procedure based on the measurable characteristics of vegetation and flow was developed. A major advantage of this procedure over the old methods was its ability to estimate the flow resistance of woody vegetation in both leafless and leafy conditions. In determining the velocity profile and flow resistance caused by submerged flexible vegetation, the approach developed by Stephan (2002) was found to be suitable. However, a new formulation was proposed for the shear velocity based on deflected plant height. This modification offered better practical applicability than the original formulation, which requires complicated turbulence measurements. In the field studies, the experimental results for friction factors were, excluding those for low flows, in agreement with the values presented in the literature. Overall, the gathered field data from degraded, restored, and natural channel reaches formed a reference data set, which could be useful in other similar restoration or engineering projects. The field studies showed that both flow resistance and cross-sectional geometry were vital factors in determining local hydraulic conditions. The parameters defining these two factors were found to be simple but nonetheless valuable in evaluating the ...