Enhancing the structural stress assessment of distorted lightweight ship deck structures

Pursuing enhanced ship performance has driven lightweight structural solutions into modern cruise ship design. Among available strategies, the employment of thin steel plates in welded superstructure decks appears achievable, more sustainable and economically feasible. However, thin plates are susce...

Full description

Bibliographic Details
Main Author: Mancini, Federica
Other Authors: Romanoff, Jani, Prof., Aalto University, Department of Mechanical Engineering, Finland, Insinööritieteiden korkeakoulu, School of Engineering, Konetekniikan laitos, Department of Mechanical Engineering, Remes, Heikki, Prof., Aalto University, Department of Mechanical Engineering, Finland, Marine and Arctic Technology, Aalto-yliopisto, Aalto University
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Aalto University 2024
Subjects:
Online Access:https://aaltodoc.aalto.fi/handle/123456789/128397
Description
Summary:Pursuing enhanced ship performance has driven lightweight structural solutions into modern cruise ship design. Among available strategies, the employment of thin steel plates in welded superstructure decks appears achievable, more sustainable and economically feasible. However, thin plates are susceptible to complex welding-induced distortions, which cannot be disregarded in the fatigue and limit state analysis of the welded structure. Since the effect of those distortions is not entirely considered by ship design rules, its evaluation requires full-field scanning of welded plates to be modelled in costly numerical analyses. This thesis investigates computationally efficient structural stress assessment approaches on buttwelded 4 mm-thick plates in stiffened panels from actual shipyard production, resulting in average to severe initial distortions according to classifications in the marine structures community. The distortion measurement and characterisation are followed by the 3D geometrically non-linear finite element analysis (GNL-FEA) of the panels under tension, simulating the effect of hull girder bending on the superstructure decks. The 3D model is validated against uni-axial tensile tests on the panels. Thereafter, a gradual scale reduction from 3D to 2D and 1D models is performed numerically and analytically, where the von Kármán kinematic assumption accounts for the geometric non-linearity. As a last step, a beam model is developed for a simple half-sine curvature and considering the effect of weld rigidity. In characterising the distortions, both amplitude and slope parameters need to be considered. For multi-buckled shapes with amplitudes below the plate thickness, a 2D analytical model neglecting the geometric discontinuity due to the weld can predict global structural stresses over the panel plate field; however, the weld cross-section must be considered in the local structural stress assessment of the welded area. For the latter, the 1D GNL-FEA of a distorted longitudinal profilelocated within 60% ...