Surface energy balance and modeled firn density at four sites of the accumulation area of the Greenland ice sheet

Recent Arctic atmospheric warming induces more frequent surface melt in the accumulation area of the Greenland ice sheet. This increased melting modifies the near-surface firn structure and density and may reduce the firn’s capacity to retain meltwater. Yet, few long-term observational records are a...

Full description

Bibliographic Details
Main Author: Baptiste Vandecrux
Format: Dataset
Language:unknown
Published: Arctic Data Center 2018
Subjects:
Online Access:https://search.dataone.org/view/urn:uuid:c05fe9d4-5002-475b-91d2-e2158f82ed55
Description
Summary:Recent Arctic atmospheric warming induces more frequent surface melt in the accumulation area of the Greenland ice sheet. This increased melting modifies the near-surface firn structure and density and may reduce the firn’s capacity to retain meltwater. Yet, few long-term observational records are available to determine the evolution and drivers of firn density. In Vandecrux et al. (2018, DOI: 10.1029/2017JF004597), we compiled and gap-filled Greenland Climate Network (GC-Net) automatic weather station data from Crawford Point, Dye-2, NASA-SE and Summit between 1998 and 2015. These records then forced a coupled surface energy balance and firn evolution model. In this data package we firstly provide, for each site, our calculations of surface conditions: hourly 2 m air temperature and humidity, 10 m wind speed as well as energy and mass fluxes at the surface. Secondly we give the simulated firn density along with the contributions of its climatic drivers.