Greenland Ice Sheet Monitoring Network (GLISN) Operations

The Greenland Ice Sheet Monitoring Network (GLISN) is a broadband, multi-use seismological network, enhanced by selected geodetic observations, designed with the capability to allow researchers to understand the changes currently occurring in the Arctic, and with the operational characteristics nece...

Full description

Bibliographic Details
Main Author: Robert Detrick
Format: Dataset
Language:unknown
Published: Arctic Data Center 2015
Subjects:
AON
Online Access:https://search.dataone.org/view/urn:uuid:197ac105-27fc-41cf-b7b3-4a31c3428e0e
Description
Summary:The Greenland Ice Sheet Monitoring Network (GLISN) is a broadband, multi-use seismological network, enhanced by selected geodetic observations, designed with the capability to allow researchers to understand the changes currently occurring in the Arctic, and with the operational characteristics necessary to enable response to those changes as understanding improves. GLISN was established through an international collaboration, with 10 nations coordinating their efforts to develop the current 32-station observing network during the last four years. This project will continue operations of six key stations of the network, as well as data quality control and data-management for the network. It will also improve the telemetry capability at remote stations to maximize the scientific utility of the data, reduce data latency, and reduce logistics costs. Continued leadership by IRIS in the management and coordination of the International GLISN effort will ensure continued return of high-quality data from the full 32-station network. Observations from the GLISN network will allow improved estimation of the Earth structure under Greenland, critical for reliable estimation, interpretation, and prediction of changes in ice mass, sea level, and the crustal stress state. These observations will also allow greatly improved analysis of deformation within the ice sheet and at its calving margins due to processes including discrete ice-loss events, melt-water drainage, crevassing, and basal sliding. Seismic analysis provides unique information about glacier dynamics and sub-glacial geology, complementing other remote-sensing and in-situ observations. GLISN science and outreach will leverage and enhance outreach and education programs undertaken by the IRIS Consortium and its community.