Virgin Islands National Park: Coral Reef: Recruitment Tiles

In this study, coral recruitment was measured on a kilometer-wide scale on shallow (5–6 m depth) fringing reefs in St. John, US Virgin Islands, with the objective of determining the extent to which variation in recruitment was affected by biophysical coupling involving temperature and flow. Coral re...

Full description

Bibliographic Details
Main Authors: California State University Northridge, Peter Edmunds
Format: Dataset
Language:unknown
Published: Environmental Data Initiative 2020
Subjects:
NSF
Online Access:https://pasta.lternet.edu/package/metadata/eml/edi/292/3
Description
Summary:In this study, coral recruitment was measured on a kilometer-wide scale on shallow (5–6 m depth) fringing reefs in St. John, US Virgin Islands, with the objective of determining the extent to which variation in recruitment was affected by biophysical coupling involving temperature and flow. Coral recruitment was measured using settlement tiles deployed at 10 sites along 10 km of shore. The tiles were first deployed in August 2006, and thereafter replaced every ≈6 months to sample from either August to January, or January to August over 2 years. Seawater temperature was recorded at the 10 sites using logging thermistors, and flow was quantified using drogues. Overall, corals recruited at a rate equivalent to 76 corals m− 2 6 months− 1, and were represented mostly by poritids (43% of recruits), agaricids (29%), faviids (17%) and siderastreids (7%). Although the density of recruits differed among sites in a pattern that varied among periods and years, there was a consistent trend for mean density to decline from ≈ 4 corals tile− 1 at eastern sites, to ≤ 1 coral tile− 1 at western sites. One aspect of seawater temperature – the daily range – differed among sites and was greater at western compared to eastern sites, and while it was related inversely to recruitment over one of the sampling periods, it was equivocal as a physical process affecting recruitment. Instead, our results are consistent with biophysical coupling involving patch depletion and downstream filtering, whereby patches of coral larvae are delivered to the south shore of St. John and depleted of larvae through settlement as the water progresses westward.