Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001

Abstract: This data set includes gas ratios in polar firn air: O<sub>2</sub>/N<sub>2</sub>, <sup>15</sup>N/<sup>14</sup>N, <sup>40</sup>Ar/N<sub>2</sub>, <sup>40</sup>Ar/<sup>36</sup>Ar, <sup>40<...

Full description

Bibliographic Details
Main Authors: Severinghaus, Jeffrey P., Battle, Mark, Bender, Michael
Format: Dataset
Language:unknown
Published: IEDA: US Antarctic Program Data Center 2006
Subjects:
Online Access:http://get.iedadata.org/metadata/iso/609290
Description
Summary:Abstract: This data set includes gas ratios in polar firn air: O<sub>2</sub>/N<sub>2</sub>, <sup>15</sup>N/<sup>14</sup>N, <sup>40</sup>Ar/N<sub>2</sub>, <sup>40</sup>Ar/<sup>36</sup>Ar, <sup>40</sup>Ar/<sup>38</sup>Ar, <sup>84</sup>Kr/<sup>36</sup>Ar, <sup>132</sup>Xe/<sup>36</sup>Ar, and <sup>22</sup>Ne/<sup>36</sup>Ar. Investigators sampled air from the permeable snowpack (firn) layer at two sites: Siple Dome, Antarctica in 1996 and at the South Pole in 2001. They observed and modeled the processes of gravitational settling, thermal fractionation, and preferential exclusion of small gas molecules from closed air bubbles. The purpose of this study was to understand these physical processes, which affect the composition of bubbles trapped in ice. By measuring these gas ratios in the ancient air preserved in bubbles trapped in ice, researchers can determine past atmospheric composition and local temperature changes along with the relative timing and magnitude of such events. The data file is available in Microsoft Excel format. The research paper is available in PDF. Data and the research paper are available via FTP.