IPCC Climate Change Data: NIES99 A2a Model: 2080 Wind Speed

The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) an...

Full description

Bibliographic Details
Main Author: Intergovernmental Panel on Climate Change (IPCC)
Format: Dataset
Language:unknown
Published: Knowledge Network for Biocomplexity
Subjects:
Online Access:https://doi.org/10.5063/AA/dpennington.338.1
Description
Summary:The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model. For the A2 emissions scenario the main emphasis is on a strengthening of regional and local culture, with a "return to family values" in many regions. The A2 world "consolidates" into a series of roughly continental economic regions, emphasizing local cultural roots. In some regions, increased religious participation leads many to reject a materialist path and to focus attention on contributing to the local community. Elsewhere, the trend is towards increased investment in education and science and growth in economic productivity. Social and political structures diversify, with some regions moving towards stronger welfare systems and reduced income inequality, while others move towards "lean" government. Environmental concerns are relatively weak, although some attention is paid to bringing local pollution under control and maintaining local environmental amenities. The A2 world sees more international tensions and less cooperation than in A1 or B1. People, ideas and capital are less mobile so that technology diffuses slowly. International disparities in productivity, and hence income per capita, are maintained or increased. With the emphasis on family and community life, fertility rates decline only slowly, although they vary among regions. Hence, this scenario family has high population growth (to 15 billion by 2100) with comparatively low incomes per capita relative to the A1 and B1 worlds, at US$7,200 in 2050 and US$16,000 in 2100. Technological change is rapid in some regions and slow in others as industry adjusts to local resource endowments, culture, and education levels. Regions with abundant energy and mineral resources evolve more resource intensive economies, while those poor in resources place very high priority on minimizing import dependence through technological innovation to improve resource efficiency and make use of substitute inputs. The fuel mix in different regions is determined primarily by resource availability. And divisions among regions persist in terms of their mix of technologies, with high-income but resource-poor regions shifting toward advanced post fossil technologies (renewables in regions of large land availability, nuclear in densely populated, resource poor regions) and low-income resource-rich regions generally relying on older fossil technologies. With substantial food requirements, agricultural productivity is one of the main focus areas for innovation and RD efforts in this future. Initially high levels of soil erosion and water pollution are eventually eased through the local development of more sustainable high-yield agriculture. Although attention is given to potential local and regional environmental damage, it is not uniform across regions. For example, sulfur and particulate emissions are reduced in Asia due to impacts on human health and agricultural production but increase in Africa as a result of the intensified exploitation of coal and other mineral resources. The A2 world sees high energy and carbon intensity, and correspondingly high GHG emissions. Its CO2 emissions are the highest of all four scenario families.