Transcriptomic responses in the nervous system and correlated behavioural changes of a cephalopod exposed to ocean acidification

The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. We evaluated the transcriptomic response of the c...

Full description

Bibliographic Details
Main Authors: Thomas, Jodi, Huerlimann, Roger, Schunter, Celia, Watson, Sue-Ann, Munday, Philip, Ravasi, Timothy
Format: Other/Unknown Material
Language:unknown
Published: Authorea, Inc. 2023
Subjects:
Online Access:http://dx.doi.org/10.22541/au.169052790.09398364/v2
Description
Summary:The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid ( Idiosepius pygmaeus ) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations between gene expression profiles, CO treatment and OA-affected behaviours. This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gap in our knowledge between environmental change and animal responses.