Phylogenomics, biogeography, and evolution of morphology and ecological niche of the eastern Asian–eastern North American Nyssa(Nyssaceae)

Abstract Nyssa (Nyssaceae, Cornales) represents a classical example of the well‐known eastern Asian–eastern North American floristic disjunction. The genus consists of three species in eastern Asia, four species in eastern North America, and one species in Central America. Species of the genus are e...

Full description

Bibliographic Details
Published in:Journal of Systematics and Evolution
Main Authors: Zhou, Wenbin, Xiang, Qiu‐Yun (Jenny), Wen, Jun
Other Authors: National Science Foundation
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2020
Subjects:
Online Access:http://dx.doi.org/10.1111/jse.12599
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fjse.12599
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jse.12599
https://onlinelibrary.wiley.com/doi/full-xml/10.1111/jse.12599
https://onlinelibrary.wiley.com/doi/am-pdf/10.1111/jse.12599
Description
Summary:Abstract Nyssa (Nyssaceae, Cornales) represents a classical example of the well‐known eastern Asian–eastern North American floristic disjunction. The genus consists of three species in eastern Asia, four species in eastern North America, and one species in Central America. Species of the genus are ecologically important trees in eastern North American and eastern Asian forests. The distribution of living species and a rich fossil record of the genus make it an excellent model for understanding the origin and evolution of the eastern Asian–eastern North American floristic disjunction. However, despite the small number of species, relationships within the genus have remained unclear and have not been elucidated using a molecular approach. Here, we integrate data from 48 nuclear genes, fossils, morphology, and ecological niche to resolve species relationships, elucidate its biogeographical history, and investigate the evolution of morphology and ecological niches, aiming at a better understanding of the well‐known EA–ENA floristic disjunction. Results showed that the Central American (CAM) Nyssa talamancana was sister to the remaining species, which were divided among three, rapidly diversified subclades. Estimated divergence times and biogeographical history suggested that Nyssa had an ancestral range in Eurasia and western North America in the late Paleocene. The rapid diversification occurred in the early Eocene, followed by multiple dispersals between and within the Erasian and North American continents. The genus experienced two major episodes of extinction in the early Oligocene and end of Neogene, respectively. The Central American N. talamancana represents a relic lineage of the boreotropical flora in the Paleocene/Eocene boundary that once diversified in western North America. The results supported the importance of both the North Atlantic land bridge and the Bering land bridge (BLB) for the Paleogene dispersals of Nyssa and the Neogene dispersals, respectively, as well as the role of Central America as ...