Numerical and dietary responses of a predator community in a temperate zone of Europe

The generalist predation hypothesis predicts that the functional responses of generalist predator species should be quicker than those of specialist predators and have a regulating effect on vole populations. New interpretations of their role in temperate ecosystems have, however, reactivated a deba...

Full description

Bibliographic Details
Published in:Ecography
Main Authors: Dupuy, Gilles, Giraudoux, Patrick, Delattre, Pierre
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2009
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1600-0587.2008.04930.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1600-0587.2008.04930.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0587.2008.04930.x
Description
Summary:The generalist predation hypothesis predicts that the functional responses of generalist predator species should be quicker than those of specialist predators and have a regulating effect on vole populations. New interpretations of their role in temperate ecosystems have, however, reactivated a debate suggesting generalist predators may have a destabilizing effect under certain conditions (e.g. landscape homogeneity, low prey diversity, temporary dominance of 1 prey species associated with a high degree of dietary specialization). We studied a rich predator community dominated by generalist carnivores ( Martes spp., Vulpes vulpes, Felis catus ) over a 6 yr period in farmland and woodland in France. The most frequent prey were small rodents (mostly Microtus arvalis , a grassland species, and Apodemus spp., a woodland species). Alternative prey were diverse and dominated by lagomorphs ( Oryctolagus cuniculus, Lepus europeus ). We detected a numerical response among specialist carnivores but not among generalist predators. The dietary responses of generalist predators were fairly complex and most often dependent on variation in density of at least 1 prey species. These results support the generalist predation hypothesis. We document a switch to alternative prey, an increase of diet diversity, and a decrease of diet overlap between small and mediumā€sized generalists during the low density phase of M. arvalis . In this ecosystem, the high density phases of small mammal species are synchronous and cause a temporary specializing of several generalist predator species. This rapid functional response may indicate the predominant role of generalists in low amplitude population cycles of voles observed in some temperate areas.