Lobal interactions and rheologic superposition in subglacial till near Bradtville, Ontario, Canada

Structural, stratigraphic, and lithologic data from a section 69 m long of Catfish Creek drift (north shore of Lake Erie) tell a complex story of two competing glacial lobes. Stone surface features and orientations indicate that stones rotated in viscously deforming, fine‐medium textured subglacial...

Full description

Bibliographic Details
Published in:Boreas
Main Author: HICOCK, STEPHEN R.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 1992
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1502-3885.1992.tb00014.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1502-3885.1992.tb00014.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1502-3885.1992.tb00014.x
Description
Summary:Structural, stratigraphic, and lithologic data from a section 69 m long of Catfish Creek drift (north shore of Lake Erie) tell a complex story of two competing glacial lobes. Stone surface features and orientations indicate that stones rotated in viscously deforming, fine‐medium textured subglacial till prior to final emplacement. Fractures, shears, and attenuated sediment lenses in tills reveal that they experienced some brittle shear superposed on ductile shear during till dewatering and stiffening. The Huron‐Georgian Bay lobe advanced first from the northwest, deforming interstadial sediments and depositing subglacial till. Next, southward confluent flow of the Huron, Georgian Bay, and Erie lobes carved subglacial troughs into sediments and deposited (then deformed) bouldery deformation till by squeeze flow. The northwest flowing Erie lobe then prevailed, depositing deformation till, subglacial aquatic sediments, and mudflows. Finally, a pavement‐bearing, hybrid deformation‐lodgement till covered the section. Till formation was mainly by subglacial viscous flow with minor lodgement superposed as water content decreased and some fines were probably winnowed. This implies that till deformation probably accounted for much of the glacier movement. Therefore, rapid ice flow could have occurred over the section, along the southern margin of the Laurentide Ice Sheet.