Long‐term stability and effective population size in North Sea and Baltic Sea cod ( Gadus morhua)

Abstract DNA from archived otoliths was used to explore the temporal stability of the genetic composition of two cod populations, the Moray Firth (North Sea) sampled in 1965 and 2002, and the Bornholm Basin (Baltic Sea) sampled in 1928 and 1997. We found no significant changes in the allele frequenc...

Full description

Bibliographic Details
Published in:Molecular Ecology
Main Authors: POULSEN, NINA Aa., NIELSEN, EINAR E., SCHIERUP, MIKKEL H., LOESCHCKE, VOLKER, GRØNKJÆR, PETER
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2005
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1365-294x.2005.02777.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1365-294X.2005.02777.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-294X.2005.02777.x
Description
Summary:Abstract DNA from archived otoliths was used to explore the temporal stability of the genetic composition of two cod populations, the Moray Firth (North Sea) sampled in 1965 and 2002, and the Bornholm Basin (Baltic Sea) sampled in 1928 and 1997. We found no significant changes in the allele frequencies for the Moray Firth population, while subtle but significant genetic changes over time were detected for the Bornholm Basin population. Estimates of the effective population size ( N e ) generally exceeded 500 for both populations when employing a number of varieties of the temporal genetic method. However, confidence intervals were very wide and N e 's most likely range in the thousands. There was no apparent loss of genetic variability and no evidence of a genetic bottleneck for either of the populations. Calculations of the expected levels of genetic variability under different scenarios of N e showed that the number of alleles commonly reported at microsatellite loci in Atlantic cod is best explained by N e 's exceeding thousand. Recent fishery‐induced bottlenecks can, however, not be ruled out as an explanation for the apparent discrepancy between high levels of variability and recently reported estimates of N e << 1000. From life history traits and estimates of survival rates in the wild, we evaluate the compatibility of the species’ biology and extremely low N e / N ratios. Our data suggest that very small N e 's are not likely to be of general concern for cod populations and, accordingly, most populations do not face any severe threat of losing evolutionary potential due to genetic drift.