Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch

Abstract The spread of infectious larval sea lice, Lepeophtheirus salmonis (Krøyer, 1838), between wild salmonids and farmed Atlantic salmon, Salmo salar , remains a contentious area of uncertainty. However, as laboratory and field experiments increase our knowledge of sea lice behaviour under envir...

Full description

Bibliographic Details
Published in:Journal of Fish Diseases
Main Authors: Amundrud, T L, Murray, A G
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2009
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1365-2761.2008.00980.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1365-2761.2008.00980.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2761.2008.00980.x
Description
Summary:Abstract The spread of infectious larval sea lice, Lepeophtheirus salmonis (Krøyer, 1838), between wild salmonids and farmed Atlantic salmon, Salmo salar , remains a contentious area of uncertainty. However, as laboratory and field experiments increase our knowledge of sea lice behaviour under environmental forcing, numerical modelling tools can be used to predict the spread of infectious sea louse larvae from a point source. A three‐dimensional numerical model has been developed and recently validated within Loch Torridon, a fjordic sea loch on the west coast of Scotland. Output from the numerical model is used to drive a particle tracking model which follows statistical representations of sea lice through the planktonic stages of a louse life cycle. By including maturation and mortality, the models can be used to predict the dispersion and transport of infectious sea lice from a point source and can be used to produce maps of infectivity under varying environmental conditions. Results highlight the importance of the wind‐driven circulation for larval lice transport and suggest that local environmental conditions have considerable impact on the probability of sea lice infection spreading between wild and farmed fish populations.