Origin of the tropical–polar biodiversity contrast

Abstract Aim The aim was to investigate the evolutionary origins of the striking biodiversity contrast between high‐ and low‐latitude regions in the present day. Is this a relatively recent phenomenon, causally linked in some way to the greenhouse–icehouse transition and onset of global cooling c ....

Full description

Bibliographic Details
Published in:Global Ecology and Biogeography
Main Authors: Crame, J. Alistair, McGowan, Alistair J.
Other Authors: British Antarctic Survey
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2022
Subjects:
Online Access:http://dx.doi.org/10.1111/geb.13503
https://onlinelibrary.wiley.com/doi/pdf/10.1111/geb.13503
https://onlinelibrary.wiley.com/doi/full-xml/10.1111/geb.13503
Description
Summary:Abstract Aim The aim was to investigate the evolutionary origins of the striking biodiversity contrast between high‐ and low‐latitude regions in the present day. Is this a relatively recent phenomenon, causally linked in some way to the greenhouse–icehouse transition and onset of global cooling c . 34 Myr ago, or does it have deeper temporal roots and thus other potential causes? Location Early Cenozoic fossil assemblages from two tropical and one polar region, and modern counterparts from various tropical localities and Antarctica. Time period The Cretaceous–Palaeogene (K/Pg) mass extinction event, Early Cenozoic (Palaeocene–Eocene) and the present day. Major taxa studied Shelf‐depth marine Mollusca; the four richest modern benthic clades: Imparidentia, Pteriomorphia, Neogastropoda and Littorinimorpha. Methods The K/Pg mass extinction and subsequent recovery was compared between two tropical and one polar region at four distinct stratigraphic intervals. Taxa were identified to species level and assigned to principal families within the four largest benthic molluscan clades. Taxon counts were compared between the three regions at each level and also compared with standardized tropical and polar modern faunas. Results The mass extinction was followed by a distinct 25 Myr phase of evolutionary radiation, during which the tropical–polar contrast in the taxonomic composition of all four clades was strongly enhanced; as the global molluscan fauna expanded, it differentiated into distinct low‐ and high‐latitude components. Main conclusions A marked differentiation of tropical and polar molluscan faunas occurred in the immediate aftermath of the K/Pg mass extinction; it is likely that, at least for the two bivalve clades investigated, this differentiation was initiated well within the Mesozoic era. The greater antiquity of the tropical–polar split suggests that it was not the product of any single controlling factor during the Cenozoic.