Why do avian responses to change in Arctic green‐up vary?

Abstract Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differen...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Tavera, Eveling A., Lank, David B., Douglas, David C., Sandercock, Brett K., Lanctot, Richard B., Schmidt, Niels M., Reneerkens, Jeroen, Ward, David H., Bêty, Joël, Kwon, Eunbi, Lecomte, Nicolas, Gratto‐Trevor, Cheri, Smith, Paul A., English, Willow B., Saalfeld, Sarah T., Brown, Stephen C., Gates, H. River, Nol, Erica, Liebezeit, Joseph R., McGuire, Rebecca L., McKinnon, Laura, Kendall, Steve, Robards, Martin, Boldenow, Megan, Payer, David C., Rausch, Jennie, Solovyeva, Diana V., Stalwick, Jordyn A., Gurney, Kirsty E. B.
Other Authors: U.S. Bureau of Land Management, Kresge Foundation, U.S. Geological Survey, U.S. Fish and Wildlife Service, National Fish and Wildlife Foundation, University of Alaska Fairbanks, University of Colorado Denver, Kansas State University, Arctic Landscape Conservation Cooperative, Arctic Goose Joint Venture, Canada Research Chairs, Churchill Northern Studies Centre, Ducks Unlimited Canada, Environment and Climate Change Canada, Government of Nunavut, National Science Foundation, Natural Resources Canada, Natural Sciences and Engineering Research Council of Canada, Trust for Mutual Understanding, Université du Québec à Rimouski, Garfield Weston Foundation
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2024
Subjects:
Online Access:http://dx.doi.org/10.1111/gcb.17335
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.17335
Description
Summary:Abstract Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic‐breeding shorebird species at 18 sites over a 23‐year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species‐level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer‐distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long‐distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.