Viral attack exacerbates the susceptibility of a bloom‐forming alga to ocean acidification

Abstract Both ocean acidification and viral infection bring about changes in marine phytoplankton physiological activities and community composition. However, little information is available on how the relationship between phytoplankton and viruses may be affected by ocean acidification and what imp...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Chen, Shanwen, Gao, Kunshan, Beardall, John
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2014
Subjects:
Online Access:http://dx.doi.org/10.1111/gcb.12753
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12753
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12753
Description
Summary:Abstract Both ocean acidification and viral infection bring about changes in marine phytoplankton physiological activities and community composition. However, little information is available on how the relationship between phytoplankton and viruses may be affected by ocean acidification and what impacts this might have on photosynthesis‐driven marine biological CO 2 pump. Here, we show that when the harmful bloom alga Phaeocystis globosa is infected with viruses under future ocean conditions, its photosynthetic performance further decreased and cells became more susceptible to stressful light levels, showing enhanced photoinhibition and reduced carbon fixation, up‐regulation of mitochondrial respiration and decreased virus burst size. Our results indicate that ocean acidification exacerbates the impacts of viral attack on P. globosa , which implies that, while ocean acidification directly influences marine primary producers, it may also affect them indirectly by altering their relationship with viruses. Therefore, viruses as a biotic stressor need to be invoked when considering the overall impacts of climate change on marine productivity and carbon sequestration.