Islands of ice: Glacier‐dwelling metazoans form regionally distinct populations despite extensive periods of deglaciation

Abstract Aim Glaciers cover considerable portion of land and host diverse life forms from single‐celled organisms to invertebrates. However, the determinants of diversity and community composition of these organisms remain underexplored. This study addresses the biogeography, population connectivity...

Full description

Bibliographic Details
Published in:Diversity and Distributions
Main Authors: Janko, Karel, Shain, Daniel H., Fontaneto, Diego, Kaštánková Doležálková, Marie, Buda, Jakub, Štefková Kašparová, Eva, Šabacká, Marie, Rosvold, Jørgen, Stefaniak, Jacek, Hessen, Dag Olav, Devetter, Miloslav, Jimenez/Santos, Marco Antonio, Horna, Patrik, Janková Drdová, Edita, Yde, Jacob Clement, Zawierucha, Krzysztof
Other Authors: Neuron Nadační Fond Na Podporu Vědy, Grantová Agentura České Republiky, Norges Forskningsråd
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2024
Subjects:
Online Access:http://dx.doi.org/10.1111/ddi.13859
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ddi.13859
Description
Summary:Abstract Aim Glaciers cover considerable portion of land and host diverse life forms from single‐celled organisms to invertebrates. However, the determinants of diversity and community composition of these organisms remain underexplored. This study addresses the biogeography, population connectivity and dispersal of these organisms, especially critical in understanding during the rapid recession of glaciers and increased extinction risk for isolated populations. By reconstructing the Quaternary biogeographic history of Fontourion glacialis , a widespread in Northern Hemisphere glacier obligate species of Tardigrada, we aim to understand how populations of glacier‐dwelling metazoans receive immigrants, respond to disappearing glaciers and to what extent remaining glaciers can serve as refugia. Location Glaciers across Svalbard, Scandinavia, Greenland and Iceland. Methods We analysed mtDNA (COI gene) variability of 263 F. glacialis specimens collected across the distribution range. Phylogeographic and coalescent‐based approaches were used to detect population differentiation patterns, investigate most likely models of gene flow and test the influences of geographical and climatic factors on the distribution of F. glacialis genetic variants. Results Our findings indicate that the distribution of F. glacialis genetic variants is primarily influenced by geographical rather than climatic factors. Populations exhibit a dispersal‐limited distribution pattern, influenced by geographical distance and local barriers, even between neighbouring glaciers. Significantly, the genetic structure within Scandinavia suggests the existence of “southern” glacial or low‐temperature refugia, where F. glacialis may have survived a period of extensive deglaciation during the Holocene climatic optimum (8–5 kyr ago). Main Conclusion The study uncovers complex metapopulation structures in F. glacialis , with impacts of local barriers, population bottlenecks as well as historical ice sheet fluctuations. It suggests that such populations can ...