Holocene permafrost history and cryostratigraphy in the High‐Arctic Adventdalen Valley, central Svalbard

This paper presents the history and cryostratigraphy of the upper permafrost in the High‐Arctic Adventdalen Valley, central Svalbard. Nineteen frozen sediment cores, up to 10.7 m long, obtained at five periglacial landforms, were analysed for cryostructures, ice, carbon and solute contents, and grai...

Full description

Bibliographic Details
Published in:Boreas
Main Authors: Cable, Stefanie, Elberling, Bo, Kroon, Aart
Other Authors: Seventh Framework Programme, Danmarks Grundforskningsfond
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2017
Subjects:
Ice
Online Access:http://dx.doi.org/10.1111/bor.12286
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fbor.12286
https://onlinelibrary.wiley.com/doi/pdf/10.1111/bor.12286
Description
Summary:This paper presents the history and cryostratigraphy of the upper permafrost in the High‐Arctic Adventdalen Valley, central Svalbard. Nineteen frozen sediment cores, up to 10.7 m long, obtained at five periglacial landforms, were analysed for cryostructures, ice, carbon and solute contents, and grain‐size distribution, and were 14 C‐ and OSL ‐dated. Spatial variability in ice and carbon contents is closely related to the sedimentary history and mode of permafrost aggradation. In the valley bottom, saline epigenetic permafrost with pore ice down to depths of 10.7 m depth formed in deltaic sediments since the mid‐Holocene; cryopegs were encountered below 6 m. In the top 1 to 5 m, syngenetic and quasi‐syngenetic permafrost with microlenticular, lenticular, suspended and organic‐matrix cryostructures developed due to loess and alluvial sedimentation since the colder late Holocene, which resulted in the burial of organic material. At the transition between deltaic sediments and loess, massive ice bodies occurred. A pingo developed where the deltaic sediments reached the surface. On hillslopes, suspended cryostructure on solifluction sheets indicates quasi‐syngenetic permafrost aggradation; lobes, in contrast, were ice‐poor. Suspended cryostructure in eluvial deposits reflects epigenetic or quasi‐syngenetic permafrost formation on a weathered bedrock plateau. Landform‐scale spatial variations in ground ice and carbon relate to variations in slope, sedimentation rate, moisture conditions and stratigraphy. Although the study reveals close links between Holocene landscape evolution and permafrost history, our results emphasize a large uncertainty in using terrain surface indicators to infer ground‐ice contents and upscale from core to landform scale in mountainous permafrost landscapes.