Response of subarctic vegetation to transient climatic change on the Seward Peninsula in north‐west Alaska

Summary Understanding the response of terrestrial ecosystems to climatic warming is a challenge because of the complex interactions of climate, disturbance, and recruitment across the landscape. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation t...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Rupp, T. Scott, Chapin, F. Stuart, Starfield, Anthony M.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2000
Subjects:
Online Access:http://dx.doi.org/10.1046/j.1365-2486.2000.00337.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1046%2Fj.1365-2486.2000.00337.x
https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2486.2000.00337.x
Description
Summary:Summary Understanding the response of terrestrial ecosystems to climatic warming is a challenge because of the complex interactions of climate, disturbance, and recruitment across the landscape. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation to climatic warming on the Seward Peninsula (80 000 km 2 ) in north‐west Alaska. Model calibration efforts showed that fire ignition was less sensitive than fire spread to regional climate (temperature and precipitation). In the model simulations a warming climate led to slightly more fires and much larger fires and expansion of forest into previously treeless tundra. Vegetation and fire regime continued to change for centuries after cessation of the simulated climate warming. Flammability increased rapidly in direct response to climate warming and more gradually in response to climate‐induced vegetation change. In the simulations warming caused as much as a 228% increase in the total area burned per decade, leading to an increasingly early successional and more homogenous deciduous forest‐dominated landscape. A single transient 40‐y drought led to the development of a novel grassland–steppe ecosystem that persisted indefinitely and caused permanent increases in fires in both the grassland and adjacent vegetation. These simulated changes in vegetation and disturbance dynamics under a warming climate have important implications for regional carbon budgets and biotic feedbacks to regional climate.