Stratospheric impact on tropospheric winds deduced from potential vorticity inversion in relation to the Arctic Oscillation

Abstract The zonal mean state of the atmosphere in the Northern Hemisphere in winter is determined by the temperature at the Earth's surface and by two potential vorticity (PV) anomalies (defined as that part of the PV field that induces a wind field) centred over the North Pole: one in the upp...

Full description

Bibliographic Details
Published in:Quarterly Journal of the Royal Meteorological Society
Main Authors: Hinssen, Yvonne, Delden, Aarnout van, Opsteegh, Theo, Geus, Wouter de
Other Authors: ECMWF
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2010
Subjects:
Online Access:http://dx.doi.org/10.1002/qj.542
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fqj.542
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.542
Description
Summary:Abstract The zonal mean state of the atmosphere in the Northern Hemisphere in winter is determined by the temperature at the Earth's surface and by two potential vorticity (PV) anomalies (defined as that part of the PV field that induces a wind field) centred over the North Pole: one in the upper troposphere/lower stratosphere (UTLS), extending to the Subtropics, and the other over the polar cap in the lower to middle stratosphere. Isentropic PV inversion demonstrates that the UTLS PV anomaly induces the main part of the zonal mean wind in the troposphere, including the subtropical jet stream, while the stratospheric PV anomaly induces the polar night stratospheric jet. The stratospheric PV anomaly has a greater amplitude and extends further downwards if the Arctic Oscillation (AO) index is positive. Also, the UTLS PV anomaly has a slightly larger amplitude if the AO index is positive, but the meridional PV gradient in the Subtropics that is associated with this anomaly is greatest when the AO index is negative, resulting in a stronger subtropical jet when the AO index is negative. PV inversion translates the UTLS PV anomaly into a wind anomaly and a static stability anomaly. The resulting differences in the vertical wind shear and in the Brunt–Väisälä frequency between the two AO phases show a larger baroclinicity in the extratropics when the AO index is positive. This explains why more extratropical cyclones are observed when the AO index is positive. Copyright © 2010 Royal Meteorological Society