Scaled physical modelling of mass movement processes on thawing slopes

Abstract This paper presents initial results from scaled geotechnical centrifuge modelling of cryogenic slope processes. Four experiments are described in which 1/10 scale planar slope models were constructed from a silty soil at gradients of 12°, 18° and 24°. Models were frozen on the laboratory fl...

Full description

Bibliographic Details
Published in:Permafrost and Periglacial Processes
Main Authors: Harris, Charles, Rea, Brice, Davies, Michael
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2001
Subjects:
Online Access:http://dx.doi.org/10.1002/ppp.373
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fppp.373
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ppp.373
Description
Summary:Abstract This paper presents initial results from scaled geotechnical centrifuge modelling of cryogenic slope processes. Four experiments are described in which 1/10 scale planar slope models were constructed from a silty soil at gradients of 12°, 18° and 24°. Models were frozen on the laboratory floor, and thawed in the centrifuge at 10 gravities. Frost heave, thaw settlement, soil temperature and pore water pressures were recorded. In each experiment, ten columns of 5 mm long plastic cylinders inserted through the soil profile allowed surface soil displacements to be determined, and indicated displacement profiles with depth at the end of each experiment. The 12° model was subjected to four cycles of freezing and thawing, simulating four annual active‐layer freeze–thaw cycles. During each thaw phase, gelifluction occurred, and average model‐scale surface displacements were 18.7 mm/cycle (equivalent to 187 mm/cycle at prototype scale). In the 18° model, gelifluction rates were higher, with average surface displacements of 65.1 mm/cycle at model scale, 651 mm/cycle at prototype scale. Two replicate 24° frozen slope models were tested in the centrifuge, and thawing was associated with failure by mudflow. Maximum pore water pressures during thaw were similar in all models. Slope stability analysis using an infinite planar model indicated that the factor of safety against failure remained >1 in the 12° model, was close to or slightly less than 1 in the 18° model, and was <1 in the 24° models. Copyright © 2001 John Wiley & Sons, Ltd. RÉSUMÉ Cet article présente les premiers résultats obtenus par centrifugation pour établir des modèles géotechniques de processus cryogéniques actifs sur des pentes. Quatre expériences sont décrites dans lesquelles des modèles à l'échelle du 1/10 ont été construits avec un sol silteux et des pentes de 12°, 18° et 24°. Ces modèles ont été gelés en laboratoire et dégelés dans la centrifugeuse sous 10 gravités. Le soulèvement du sol, son affaissement, la température du sol et la ...