Comparative metabolites profiling of harvested papaya ( Carica papaya L.) peel in response to chilling stress

Abstract BACKGROUND Papaya, as one of the most important tropical fruits in the world, is easily subjected to chilling injury (CI). Research on the effect of chilling temperature storage on the metabolic changes of papaya peel is limited. RESULTS Chilling temperature (4 °C) inhibited fruit ripening...

Full description

Bibliographic Details
Published in:Journal of the Science of Food and Agriculture
Main Authors: Wu, Qixian, Li, Zhiwei, Chen, Xi, Yun, Ze, Li, Taotao, Jiang, Yueming
Other Authors: National Natural Science Foundation of China
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2019
Subjects:
Online Access:http://dx.doi.org/10.1002/jsfa.9972
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjsfa.9972
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jsfa.9972
https://onlinelibrary.wiley.com/doi/full-xml/10.1002/jsfa.9972
Description
Summary:Abstract BACKGROUND Papaya, as one of the most important tropical fruits in the world, is easily subjected to chilling injury (CI). Research on the effect of chilling temperature storage on the metabolic changes of papaya peel is limited. RESULTS Chilling temperature (4 °C) inhibited fruit ripening and induced CI on papaya fruit. Additionally, low temperature altered the concentrations of 45 primary metabolites and 52 aroma volatile compounds in the papaya peel. Papaya fruit stored at different temperatures could be separated using partial least squares‐discriminant analysis (PLS‐DA) with primary metabolites and volatile compounds as variables. In total, 18 primary metabolites and 22 volatiles with variable importance in projection (VIP) score higher than one might be considered as potential markers in papaya peel in response to chilling stress. Metabolites related to aroma, such as organic acid, amino acids, hexanal, carbonic acid, pentadecyl propyl ester and methyl geranate, caryophyllene accounted for major part of the metabolism changes of papaya peel and contributed a lot in response to cold stress. CONCLUSION This study added new insights regarding effect of chilling stress on metabolites in papaya peel. Some important metabolites might be indicator for chilling stress and detection of these metabolites will guide us to regulate the storage temperature to avoid chilling and to prolong storage of papaya fruit. © 2019 Society of Chemical Industry