Formation of De Geer moraines and implications for deglaciation dynamics
Abstract De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the...
Published in: | Journal of Quaternary Science |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Wiley
1991
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1002/jqs.3390060402 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjqs.3390060402 https://onlinelibrary.wiley.com/doi/pdf/10.1002/jqs.3390060402 |
Summary: | Abstract De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the major ice streams. Sections across three De Geer moraines show that the ridges are composed of diamictons and fine‐grained sediment, partly in stacked sequences. The diamicton units are interpreted as being composed of water‐lain tills, lodgements tills and subaqueous flow deposits. The fine‐grained sediment is though to have formed in a proglacial marine environment. Clast fabric of diamictons and deformation structures in underlying sands show that depositional directions for diamicton units and the direction of deformation for the sands is perpendicular to the ridge crests. Mainly based on this evidence, the ridges are thought to have formed by push at the glacier grounding line. The formation of transverse ridges (relative to ice flow) do occur in basal crevasses on modern glaciers, as do swarms of ridges along the front of retreating glaciers. The first mechanism of deposition does not seem to explain the ridges studied in the present paper and hence the importance of this process in the formation of De Geer moraines is questioned. The De Geer moraines were deposited by ice lobes advancing from one main fjord into another; therefore by studying the drainage pattern of the tributary lobes and their sequence of deglaciation, many features of the style of deglaciation of the ice sheet across the area can be determined. The northwestern part of the area was deglaciated earliest. After that, deglaciation proceeded to the southwest parallel to the coast. Subsequently the outer and the central part of Romsdalsfjorden were deglaciated causing ice to drain towards this fjord from both the north and south. The last fjord to be deglaciated was Storfjorden in the south. |
---|