Morphological variation among the inner ears of extinct and extant baleen whales (Cetacea: Mysticeti)

ABSTRACT Living mysticetes (baleen whales) and odontocetes (toothed whales) differ significantly in auditory function in that toothed whales are sensitive to high‐frequency and ultrasonic sound vibrations and mysticetes to low‐frequency and infrasonic noises. Our knowledge of the evolution and phylo...

Full description

Bibliographic Details
Published in:Journal of Morphology
Main Author: Ekdale, Eric G.
Other Authors: National Science Foundation
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2016
Subjects:
Online Access:http://dx.doi.org/10.1002/jmor.20610
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjmor.20610
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmor.20610
https://onlinelibrary.wiley.com/doi/full-xml/10.1002/jmor.20610
https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/jmor.20610
Description
Summary:ABSTRACT Living mysticetes (baleen whales) and odontocetes (toothed whales) differ significantly in auditory function in that toothed whales are sensitive to high‐frequency and ultrasonic sound vibrations and mysticetes to low‐frequency and infrasonic noises. Our knowledge of the evolution and phylogeny of cetaceans, and mysticetes in particular, is at a point at which we can explore morphological and physiological changes within the baleen whale inner ear. Traditional comparative anatomy and landmark‐based 3D‐geometric morphometric analyses were performed to investigate the anatomical diversity of the inner ears of extinct and extant mysticetes in comparison with other cetaceans. Principal component analyses (PCAs) show that the cochlear morphospace of odontocetes is tangential to that of mysticetes, but odontocetes are completely separated from mysticetes when semicircular canal landmarks are combined with the cochlear data. The cochlea of the archaeocete Zygorhiza kochii and early diverging extinct mysticetes plot within the morphospace of crown mysticetes, suggesting that mysticetes possess ancestral cochlear morphology and physiology. The PCA results indicate variation among mysticete species, although no major patterns are recovered to suggest separate hearing or locomotor regimes. Phylogenetic signal was detected for several clades, including crown Cetacea and crown Mysticeti, with the most clades expressing phylogenetic signal in the semicircular canal dataset. Brownian motion could not be excluded as an explanation for the signal, except for analyses combining cochlea and semicircular canal datasets for Balaenopteridae. J. Morphol. 277:1599–1615, 2016. © 2016 Wiley Periodicals, Inc.