Morphological properties of the last primaries, the tail feathers, and the alulae of Accipiter nisus, Columba livia, Falco peregrinus, and Falco tinnunculus

ABSTRACT We investigated the mechanical properties (Young's modulus, bending stiffness, barb separation forces) of the tenth primary of the wings, of the alulae and of the middle tail feathers of Falco peregrinus . For comparison, we also investigated the corresponding feathers in pigeons ( Col...

Full description

Bibliographic Details
Published in:Journal of Morphology
Main Authors: Schmitz, Anke, Ponitz, Benjamin, Brücker, Christoph, Schmitz, Helmut, Herweg, Jan, Bleckmann, Horst
Other Authors: Deutsche Forschungsgemeinschaft
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2014
Subjects:
Online Access:http://dx.doi.org/10.1002/jmor.20317
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjmor.20317
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmor.20317
Description
Summary:ABSTRACT We investigated the mechanical properties (Young's modulus, bending stiffness, barb separation forces) of the tenth primary of the wings, of the alulae and of the middle tail feathers of Falco peregrinus . For comparison, we also investigated the corresponding feathers in pigeons ( Columba livia ), kestrels ( Falco tinnunculus ), and sparrowhawks ( Accipiter nisus ). In all four species, the Young's moduli of the feathers ranged from 5.9 to 8.4 GPa. The feather shafts of F. peregrinus had the largest cross‐sections and the highest specific bending stiffness. When normalized with respect to body mass, the specific bending stiffness of primary number 10 was highest in F. tinnunculus , while that of the alula was highest in A. nisus . In comparison, the specific bending stiffness, measured at the base of the tail feathers and in dorso‐ventral bending direction, was much higher in F. peregrinus than in the other three species. This seems to correlate with the flight styles of the birds: F. tinnunculus hovers and its primaries might therefore withstand large mechanical forces. A. nisus has often to change its flight directions during hunting and perhaps needs its alulae for this maneuvers, and in F. peregrinus , the base of the tail feathers might need a high stiffness during breaking after diving. J. Morphol. 276:33–46, 2015. © 2014 Wiley Periodicals, Inc.