Formation waters discharge to rivers near oil sands projects

Abstract Groundwater discharges in the western Canadian oil sands region impact river water quality. Mapping groundwater discharges to rivers in the oil sands region is important to target water quality monitoring efforts and to ensure injected wastewater and steam remain sequestered rather than eve...

Full description

Bibliographic Details
Published in:Hydrological Processes
Main Authors: Ellis, Jessica, Jasechko, Scott
Other Authors: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2018
Subjects:
Online Access:http://dx.doi.org/10.1002/hyp.11435
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fhyp.11435
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.11435
Description
Summary:Abstract Groundwater discharges in the western Canadian oil sands region impact river water quality. Mapping groundwater discharges to rivers in the oil sands region is important to target water quality monitoring efforts and to ensure injected wastewater and steam remain sequestered rather than eventually resurfacing. Saline springs composed of Pleistocene‐aged glacial meltwater exist in the region, but their spatial distribution has not been mapped comprehensively. Here we show that formation waters discharge into 3 major rivers as they flow through the Athabasca Oil Sands Region adjacent to many active oil sands projects. These discharges increase river chloride concentrations from river headwaters to downstream reaches by factors of ~23 in the Christina River, ~4 in the Clearwater River, and ~5 in the Athabasca River. Our survey provides further evidence for the substantial impact of formation water discharges on river water quality, even though they comprise less than ~2% of total streamflow. Geochemical evidence supporting formation water discharges as the leading control on river salinity include increases in river chloride concentrations, Na/(Na + Ca) ratios, Cl/(Cl + SO 4 ) ratios and decreases in 87 Sr/ 86 Sr ratios; each mixing trend is consistent with saline groundwater discharges sourced from Cretaceous or Devonian aquifers. These regional subsurface‐to‐surface connections signify that injected wastewater or steam may potentially resurface in the future, emphasizing the critical importance of mapping groundwater flow paths to understand present‐day streamflow quality and to predict the potential for injected fluids to resurface.